首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
A novel environment-friendly vapour phase synthesis of different classes of nitrogen-containing heterocyclic compounds was developed using non-hazardous, commercially available and low cost feeds. 2-Methyl-8-ethylquinoline (MEQUI) was obtained from 2-ethylaniline (2-ETAN) and ethylene glycol (EG) or chloroethanol (CE), operating at high temperature in the presence of acid-treated K10 montmorillonite or ZnCl2/K10 montmorillonite. At lower temperatures and using copper chromite catalysts, 7-ethylindole (7-ETI) or 5-ethylindole (5-ETI) were obtained from 2-ETAN or 4-ethylaniline (4-ETAN), respectively, and EG; excess of alkylaniline was required to avoid the formation of polyalkylated by-products. Mixing SiO2 with the best copper chromite, made it possible to operate with higher LHSV values, thus improving the yield in alkylindoles. Finally, N-(2-ethylphenyl)pyrrole (EPP) and N-(2-ethylphenyl)pyrrolidine (EPD) were synthesised using a commercial copper chromite catalyst and feeding 2-ETAN and 2,3-dihydrofuran (DHF), EPP being favoured by high temperatures and absence of water in the feed. The possible reaction pathway for each synthesis is proposed, to evidence the key features of the best catalysts identified.  相似文献   

2.
Mesoporous ZrO2 with high surface area and uniform pore size distribution, synthesized by surfactant templating through a neutral [C13(EO)6–Zr(OC3H7)4] assembly pathway, was used as a support of gold catalysts prepared by deposition–precipitation method. The supports and the catalysts were characterized by powder X-ray diffraction, scanning and transmission electron microscopy, N2 adsorption analysis, temperature programmed reduction and desorption. The catalytic activity of gold supported on mesoporous zirconia was evaluated in water–gas shift (WGS) reaction at wide temperature range (140–300 °C) and at different space velocities and H2O/CO ratios. The catalytic behaviour and the reasons for а reversible deactivation of Au/mesoporous zirconia catalysts were studied. The influence of gold content and particle size on the catalytic performance was investigated. The WGS activity of the new Au/mesoporous zirconia catalyst was compared to the reference Au/TiO2 type A (World Gold Council), revealing significantly higher catalytic activity of Au/mesoporous zirconia catalyst. It is found that the mesoporous zirconia is a very efficient support of gold-based catalyst for the WGS reaction.  相似文献   

3.
SnO2–ZrO2 nanocomposite catalysts with different compositions ranging from 0 to 100% of SnO2 were prepared at room temperature by co-precipitation method using aqueous ammonia as a hydrolyzing agent. X-ray diffraction, transmission electron microscopic characterization revealed the SnO2–ZrO2 nanocomposite behavior. Acid–base properties of these catalysts were ascertained by temperature-programmed desorption (TPD) of NH3 and CO2. Both acidic and basic sites distribution of the nanocomposite catalysts is quite different from those of respective single oxides (SnO2 or ZrO2). Catalytic activity of these nanocomposite catalysts for ethylbenzene dehydrogenation (EBD) to styrene in the presence of excess CO2 was evaluated. The change in the acid–base bi-functionality of the nanocomposite catalysts in comparison with single oxides had profound positive influence in enhancing the catalytic activity.  相似文献   

4.
SBA-15 and ZrO2 (10–50 wt.%) containing SBA-15 mesoporous materials were prepared by direct and post-synthesis methods. Characterization using low angle XRD, pore size distribution, CO2 chemisorption indicate that hexagonal mesoporous structure is retained even after ZrO2 addition (25 wt.%). Mo, CoMo and NiMo catalysts prepared using these supports were examined by XRD, oxygen chemisorption, temperature programmed reduction (TPR). The catalysts were tested for hydrodesulfurization (HDS) of thiophene and hydrogenation (HYD) of cyclohexene. HDS of thiophene for 8%Mo, 3%Co8%Mo, and 3%Ni8%Mo increases with increasing ZrO2 loading in SBA-15 up to 25 wt.%. Oxygen chemisorption and TPR hydrogen consumption indicated that the molybdenum dispersion and anion vacancies, and catalytic activities are significantly influenced by ZrO2 content in Zr-SBA-15. A comparison indicated that TiO2-SBA-15, ZrO2-SBA-15 supported CoMo catalysts show higher activities for hydrodesulfurization.  相似文献   

5.
采用沉淀法制备了ZrO2载体,进一步采用浸渍法制备了不同Ni负载量的Ni/ZrO2催化剂。通过XRD、N2物理吸附、H2-TPR和H2-TPD等表征手段对Ni/ZrO2催化剂的物理结构和化学特性进行了研究,探讨了活性金属Ni物种的状态,并计算了Ni粒子的大小。随着Ni负载量的增加,Ni/ZrO2催化剂的比表面积逐渐减小,金属Ni的分散度逐渐减小,Ni粒子尺寸逐渐增大,低温H2脱附峰所占比例逐渐增大。当Ni负载量为10.2%(质量分数)时,Ni/ZrO2催化剂上ZrO2晶粒的平均尺寸和Ni粒子的尺寸大小均接近30nm。进一步考察了Ni/ZrO2催化剂在甲烷分步水蒸气重整反应中的催化性能。结果表明,Ni负载量在一定范围内的Ni/ZrO2催化剂对于甲烷分步水蒸气重整反应具有良好的催化性能,Ni负载量过高或过低均不利于甲烷的转化。当Ni负载量为10.2%时,载体ZrO2粒子和金属Ni粒子尺寸匹配,Ni/ZrO2催化剂表现出最佳的甲烷转化活性和稳定性。  相似文献   

6.
Characteristics of MnOy–ZrO2 and Pt–ZrO2–Al2O3 as reversible sorbents of NOx were investigated under dynamic changes in atmosphere. These sorbents can be used reversibly with a change of C3H8 concentration in the reaction gases. Catalytic reduction of NO occurred in the presence of propane, which was more pronounced on Pt–ZrO2–Al2O3 than on MnOy-ZrO2 due to high activity of Pt surface for this reaction on MnOy in MnOy–ZrO2. The sorption was observed as soon as the atmosphere changed from a reducing to an oxidizing one. This implies that a high equilibrium partial pressure of O2 is necessary for NO uptake since the sorbed NO3 species becomes stable. The beginning of NOx desorption atmospheres was somewhat dependent on the amount of stored NOx. The presence of propane in the gas phase strongly affected the characteristic sorption and desorption properties of MnOy–ZrO2 and Pt–ZrO2–Al2O3. The sorption and desorption properties are different for MnOy–ZrO2 and Pt–ZrO2–Al2O3, since the noble metal or metal oxide possesses unique activity for the NO reaction with C3H8 and the amount of oxygen available for oxidative sorption of NO.  相似文献   

7.
A new method has been developed to prepare sulfated zirconia (S–ZrO2) supported on mesoporous silica. With direct exchange of metal containing precursors for the surfactants in the as-synthesized MCM-41 materials, the problem of fill-up of the mesoporous structure was avoided and high sulfur content was achieved. By using this method, the composite of S–ZrO2/MCM-41 with ZrO2 content higher than 60 wt.% can be easily obtained without serious blockage of the pore structure of MCM-41. Nevertheless, the pore size and pore volume of the resultant S–ZrO2/MCM-41 composites were found to vary markedly with the loading of ZrO2. The strong acidic character of the obtained composites was examined by using them as catalysts in n-butane isomerization. Introduction of other metals such as aluminum as promoter into S–ZrO2/MCM-41 can be easily conducted by the direct impregnation method.  相似文献   

8.
The catalytic properties of transition metal oxides (Cr, Ce, and Co) supported on ZrO2 synthesized by various methods, as well as the effect of rhodium on the performance of the MxOy/ZrO2 oxide systems in NO reduction with hydrocarbons (methane, propane–butane mixture, and propene) were studied. Scanning electron microscopy, ammonia thermoprogrammed desorption (NH3-TPD), XPS, and IR spectroscopy were used to study the physicochemical indices of rhodium-promoted MxOy/ZrO2 oxide catalysts. The enhancement of the redox properties of the oxide catalysts upon the introduction of rhodium does not alter their bifunctional nature in SCR activity: these catalysts have both redox and strong acid Brønsted-sites.  相似文献   

9.
Among various Cu/ZnO/ZrO2 catalysts with the Cu/Zn ratio of 3/7, the one with 15 wt.% of ZrO2 obtains the best activity for methanol synthesis by hydrogenation of CO. The TPR, TPO and XPS analyses reveal that a new copper oxide phase is formed in the calcined Cu/ZnO/ZrO2 catalysts by the dissolution of zirconium ions in copper oxide. In addition, the Cu/ZnO/ZrO2 catalyst with 15 wt.% of ZrO2 turns out to contain the largest amount of the new copper oxide phase. When the Cu/ZnO/ZrO2 catalysts is reduced, the Cu2+ species present in the ZrO2 lattice is transformed to Cu+ species. This leads to the speculation that the addition of ZrO2 to Cu/ZnO catalysts gives rise to the formation of Cu+ species, which is related to the methanol synthesis activity of Cu/ZnO/ZrO2 catalyst in addition to Cu metal particles. Consequently, the ratio of Cu+/Cu0 is an important factor for the specific activity of Cu/ZnO/ZrO2 catalyst for methanol synthesis.  相似文献   

10.
杨霞  秦绍东  李加波  孙守理 《化工进展》2016,35(Z2):179-182
采用共沉淀法制备了ZrO2-Al2O3复合载体,并进一步制备了MoO3/ZrO2-Al2O3催化剂,考察了不同ZrO2质量分数对催化剂结构及其耐硫甲烷化性能的影响。利用N2物理吸附、X射线衍射、H2程序升温还原和透射电子显微镜等手段对催化剂的结构进行了表征。结果表明,MoO3/ZrO2-Al2O3中ZrO2的添加可以明显削弱MoO3与载体间的相互作用,促进Mo物种的还原,适量ZrO2的存在还有助于提高催化剂的比表面积,改善Mo活性相的分散性,使催化剂表现出优异的耐硫甲烷化活性。  相似文献   

11.
Zirconia supported on alumina was prepared and characterized by BET surface area, X-ray diffraction (XRD), X-ray photoelectron spectra (XPS), temperature programmed desorption (TPD), and pulse reaction. 0.2% Pd/ZrO2/Al2O3 catalyst were prepared by incipient wetness impregnation of supports with aqueous solution of Pd(NO3)2. The effects of support properties on catalytic activity for methane combustion and CO oxidation were investigated. The results show that ZrO2 is highly dispersed on the surface of Al2O3 up to 10 wt.% ZrO2, beyond this value tetragonal ZrO2 is formed. The presence of a small amount of ZrO2 can increase the surface area, pore volume and acidity of support. CO–TPD results show that the increase of CO adsorption capacity and the activation of CO bond after the presence of ZrO2 lead to the increase of catalytic activity of Pd catalyst for CO oxidation. CO pulse reaction results indicate that the lattice oxygen of support can be activated at lower temperature following the presence of ZrO2, but it does not accelerate the activity of 0.2% Pd/ZrO2/Al2O3 for methane combustion. 0.2% Pd/ZrO2/Al2O3 dried at 120 °C shows highest activity for CH4 combustion, and the activity can be further enhanced following the repeat run. The increase of treatment temperature and pre-reduction can decrease the activity of catalyst for CH4 combustion.  相似文献   

12.
ZrO2是一种高熔点金属氧化物,同时具有弱酸性和弱碱性以及氧化性与还原性,具有p型半导体性质,易产生氧空穴,是理想的催化材料。通过添加不同质量分数的ZrO2(0~5%) 作为助剂,采用分步沉淀法制备系列CuO/Fe2O3-ZrO2催化剂,通过XRD、N2物理吸附-脱附、H2-TPR和CO2-TPD等表征技术,考察ZrO2助剂对CuO/Fe2O3水煤气变换催化剂催化性能的影响。结果表明,适量ZrO2(质量分数1%)的添加,削弱了CuFe2O4中铜铁物种之间的协同作用,增加了催化剂中可被还原的铜物种的数量,形成较多的弱碱性位点,有利于增加活性中心铜的数量,具有较好的水煤气变换反应活性和热稳定性。  相似文献   

13.
Hydrogenating catalysts were prepared by inserting Ru into the pores of mesoporous Al-MCM-41 materials by selective adsorption of [Ru(NH3)6]3+. Ru/support catalysts were obtained after reduction with H2. The activities of these catalysts in hydrogenation reactions were compared to those of Ru/HY and Ru/SiO2. The catalytic properties in the absence of sulfur were tested in benzene hydrogenation, and the intrinsic activities of all the catalysts (either supported on mesoporous materials or on zeolites) were identical. It was concluded from this result that the dispersion of the Ru metallic phase was similar for all these catalysts. These samples were tested in the tetralin hydrogenation in pure H2 and in the presence of H2S (330 ppm of H2S in H2). They were found to be much less active than the zeolite-supported catalysts in the presence of H2S. It is proposed that the lower activity of the catalysts supported on mesoporous materials is either due to their milder acidity, as evidenced by NH3-TPD, cumene cracking and pyridine desorption experiments, or to the localization of the Ru nanoparticles on alumina islands.  相似文献   

14.
New gold catalytic system prepared on ceria-modified mesoporous titania (CeMTi) used as water-gas shift (WGS) reaction catalyst is reported. Mesoporous titania (MTi) was synthesized using surfactant templating method through a neutral [C13(EO)6–Ti(OC3H7)4] assembly pathway. Ceria modifying additive was deposited on MTi by deposition precipitation (DP) method. Gold-based catalysts with different gold content (1–5 wt.%) were synthesized by DP of gold hydroxide on mixed metal oxide support. The supports and the catalysts were characterized by powder X-ray diffraction (XRD), high-resolution transmission electron microscopy (HRTEM), N2 adsorption analysis and temperature-programmed reduction (TPR). The catalytic behavior of the gold-based catalysts was evaluated in WGS reaction in a wide temperature range (140–300 °C) and at different space velocities and H2O/CO ratios. The influence of gold content and particle size on the catalytic performance was investigated. The WGS activity of the new gold/ceria-modified mesoporous titania catalysts was compared with that of gold catalysts supported on simple oxides CeO2 and mesoporous TiO2, as well as gold/ceria-modified titania and reference catalyst Au/TiO2 type A (World Gold Council). A high degree of synergistic interaction between ceria and mesoporous titania and a positive modification of structural and catalytic properties by ceria has been achieved. It is clearly revealed that the ceria-modified mesoporous titania is of much interest as potential support for gold-based catalyst. The Au/ceria-modified mesoporous titania catalytic system is found to be efficient catalyst for WGSR.  相似文献   

15.
Ni/Al_2O_3催化剂是甲烷二氧化碳重整反应制取合成气研究最多、最具应用潜力的一种催化剂。通过对催化剂进行CO_2-TPD研究,考察还原态Ni/Al_2O_3催化剂的CO_2脱附特性。结果表明,浸渍法制备的Ni/Al_2O_3催化剂CO_2脱附曲线呈现双峰,分别在(60~65)℃和(350~380)℃出现高低温两个活性位;高温CO_2吸附量为3.0 cm~3·g~(-1),低温CO_2吸附量为24.0 cm~3·g~(-1)。催化剂的CO_2吸附量与其Ni含量无关。考察选用不同载体的CO_2脱附行为,发现以Al_2O_3为载体的催化剂CO_2吸附量是MgO和SiO_2为载体催化剂的2~4倍,以TiO_2为载体的催化剂几乎不吸附CO_2。  相似文献   

16.
采用柠檬酸溶胶-凝胶法制备掺杂不同Rb2O含量的MnCe/ZrO2复合氧化物催化剂,采用热重法考察其催化燃烧碳烟的活性,并借助XRD和H2-TPR手段探讨掺杂不同Rb2O含量对MnCe/ZrO2催化燃烧特性的影响。结果表明,适量Rb2O可以使催化剂与碳烟在高温下接触更为紧密,吸附空气中CO2,形成碳酸盐物质,提高催化剂的氧含量,并作为活性氧传输中心,提升MnCe/ZrO2催化燃烧性能。与未掺杂MnCe/ZrO2催化剂相比,完全燃烧温度下降31℃,碳烟在394℃内完全氧化。  相似文献   

17.
The NiSO4 supported on Fe2O3-promoted ZrO2 catalysts were prepared by the impregnation method. Fe2O3-promoted ZrO2 was prepared by the coprecipitation method using a mixed aqueous solution of zirconium oxychloride and iron nitrate solution followed by adding an aqueous ammonia solution. No diffraction line of nickel sulfate was observed up to 20 wt.%, indicating good dispersion of nickel sulfate on the surface of Fe2O3–ZrO2. The addition of nickel sulfate (or Fe2O3) to ZrO2 shifted the phase transition of ZrO2 (from amorphous to tetragonal) to higher temperatures because of the interaction between nickel sulfate (or Fe2O3) and ZrO2. 15-NiSO4/5-Fe2O3–ZrO2 containing 15 wt.% NiSO4 and 5 mol% Fe2O3, and calcined at 500 °C exhibited a maximum catalytic activity for ethylene dimerization. NiSO4/Fe2O3–ZrO2 catalysts was very effective for ethylene dimerization even at room temperature, but Fe2O3–ZrO2 without NiSO4 did not exhibit any catalytic activity at all. The catalytic activities were correlated with the acidity of catalysts measured by the ammonia chemisorption method. The addition of Fe2O3 up to 5 mol% enhanced the acidity, surface area, thermal property, and catalytic activities of catalysts gradually, due to the interaction between Fe2O3 and ZrO2 and due to consequent formation of Fe–O–Zr bond.  相似文献   

18.
费兆阳  李磊  成超  楼家伟  汤吉海  陈献  崔咪芬  乔旭 《化工学报》2018,69(12):5081-5089
采用浸渍法制备了不同负载量的ZrO2/CeO2·(xZr/Ce)和CeO2/ZrO2·(yCe/Zr)两组催化剂。并采用XRD、Raman、N2-Sorption、TEM和H2-TPR等手段对xZr/Ce和yCe/Zr的结构和性质进行表征,并结合HCl催化氧化活性研究CeO2与ZrO2在反应体系中的相互作用。结果显示,CeO2表面掺杂适量的Zr4+可以增加xZr/Ce表面氧空位浓度,提高其HCl氧化反应活性;但当CeO2表面掺杂过量的Zr4+,Zr元素会以ZrO2的形式存在于xZr/Ce表面,覆盖氧空位,降低了xZr/Ce的反应活性。对于yCe/Zr催化剂,ZrO2表面高分散的CeO2有利于催化活性的提高,但ZrO2表层负载的CeO2对催化活性的贡献具有阈值,当CeO2负载量超过10%后,额外增加的铈物种对催化活性已无显著促进作用;对比发现xZr/Ce的氧空位主要来自于铈锆固溶体,yCe/Zr的氧空位主要来自于高分散的CeO2,由铈锆固溶体产生的氧空位对活性提升更有利;与纯组分CeO2相比,xZr/Ce与yCe/Zr两组催化剂在苛刻条件下的长期稳定性测试中均表现出高反应稳定性。  相似文献   

19.
采用共沉淀法制备了一系列不同Al2O3含量的ZrO2-Al2O3复合氧化物,并在催化精馏实验装置中考察了该催化剂在碳酸丙烯酯(PC)与甲醇酯交换制备碳酸二甲酯(DMC)过程中的催化性能。通过X射线衍射(XRD)、红外光谱(FTIR)、X射线光电子能谱(XPS)、CO2程序升温脱附(CO2-TPD)和NH3程序升温脱附(NH3-TPD)等手段对所制备的催化剂进行了表征。结果表明,催化剂表面存在的酸碱性位点是制约PC与甲醇酯交换性能的重要因素。复合氧化物中Al2O3含量可以有效调控催化剂的结构特征和表面的酸碱性质,不同于ZrO2或Al2O3单金属催化剂,复合氧化物ZrO2-Al2O3在合成过程中形成了稳定的固溶体结构,导致催化剂表面弱酸量增加,并产生了强碱位点。数据分析表明,催化剂表面的强碱和弱酸含量高时,其催化活性高,说明该反应具有酸碱协同催化作用。当Zr/Al比为1时,弱酸和强碱量均达到最大值,PC的转化率和DMC选择性可达到98.14%和99.96%。催化剂在经过12次循环使用后依旧保持较高的活性,具有良好的结构稳定性。  相似文献   

20.
通过调控水热法制备条件制备同为单斜相和四方相混合晶相组成、但织构性质和表面结构性质不同的两种ZrO_2载体,采用浸渍法制备镍质量分数为10%的Ni/ZrO_2催化剂,考察不同反应温度[(150~240)℃]和氢气压力[(3~7)MPa]条件下两种ZrO_2载体负载镍催化剂的顺酐加氢性能。采用XRD、H_2-TPR、H_2-TPD和拉曼光谱等对催化剂进行表征。结果表明,与镍物种发生较强相互作用的ZrO_2负载镍催化剂具有较高的■键加氢活性与选择性,几乎没有■加氢活性,在所考察的反应温度和反应压力范围,催化剂上丁二酸酐选择性均高于95.1%,γ-丁内酯选择性均低于4.9%。与之不同,与镍物种发生较弱相互作用的ZrO_2负载镍催化剂具有较弱的■键加氢活性,然而,该催化剂表现出一定的■加氢活性,并且其■加氢活性随反应温度或反应压力的提高而显著提高。在反应温度240℃、氢气压力5 MPa条件下,γ-丁内酯选择性高达60.6%。推测晶相组成相似的两种ZrO_2载体负载镍催化剂明显的■加氢性能差异与其表面结构性质不同有关。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号