首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Diclofenac (DCF), a common analgesic, anti-arthritic and anti-rheumatic drug, is one of the most frequently detected compounds in water. This study deals with the degradation of diclofenac in aqueous solution by ozonation. Biodegradability (BOD5/COD ratio and Zahn-Wellens test), acute ecotoxicity and inhibition of activated sludge activity were determined in ozonated and non-ozonated samples. Liquid chromatography coupled with time-of-flight mass spectrometry (LC/TOF-MS) was used to identify the intermediates formed in 1 h of ozonation. Eighteen intermediates were identified by these techniques and a tentative degradation pathway for DCF ozonation is proposed.Experimental results show that ozone is efficient at removing DCF: > 99% removal (starting from an initial concentration of 0.68 mmol L− 1) was achieved after 30 min of ozonation (corresponding to an absorbed ozone dose of 0.22 g L− 1, which is 4.58 mmol L− 1). However, only 24% of the substrate was mineralized after 1 h of ozonation. The biodegradability, respiration inhibition in activated sludge and acute toxicity tests demonstrate that ozonation promotes a more biocompatible effluent of waters containing DCF.  相似文献   

2.
The combined influence of substituent type and UV/H2O2 process parameters on the degradation of four aromatic water pollutants was investigated using modified 33 full factorial design and response surface methodology. Degradation kinetics was described by the quadratic polynomial model. According to the applied ANOVA, besides pH and [H2O2], model terms related with the pollutant structure are found to be significant. Different optimal operating conditions and values of observed degradation rate constants were determined for each of the pollutants indicating that the type of substituent influences the overall process effectiveness over structurally defined degradation pathway. Biodegradability (BOD5/COD) and toxicity (TU) were evaluated prior to the treatment and at the reference time intervals t1/2(P), t3/4(P), t1/4(OC) and t1/2(OC) corresponding to the real time required to reduce the concentration of parent pollutant and organic content for 1/2, 3/4, 1/4 and 1/2 of initial amount. The observed differences are correlated to the structural differences of studied aromatics.  相似文献   

3.
Sonochemical processes have been widely used in chemistry and chemical engineering field. Recently, these processes have found new applications in the environmental field, because of advantages in terms of operational simplicity, secondary pollutant formation and safety. Several studies have reported on sonochemical degradation of organic compounds that are toxic in nature. The objective of this review was to identify and examine some of the studies on sonochmical degradation of chlorinated organic compounds, phenolic compounds and organic dyes. This review also examines the basic theory of sonochemical reactions and the use of sonochemical reactors for environmental applications.  相似文献   

4.
The mechanism of high-energy radiation induced degradation of H-acid (4-amino-5-hydroxynaphthalene-2,7-disulphonic acid, (I)) and its derivative, 4-hydroxynaphthalene-2,7-disulphonic acid (II) (central parts of a large number of azo dyes), was investigated in aqueous solutions. These compounds can be efficiently destroyed by the (*)OH and hydrated electron intermediates produced during water radiolysis. As the first step of degradation mainly cyclohexadienyl-type radicals form, however, with I H-atom elimination from the NH(2) group is also observed yielding anilino-type radicals. Both the cyclohexadienyl and the anilino-type radicals decay on the millisecond timescale. In the (*)OH reactions as stable products hydroxylated molecules and quinone-type compounds form. These molecules by further decomposition of the ring structure transform to open chain molecules. In the case of hydrated electron, the primarily formed products have absorption spectra shifted to the low-wavelength region indicating the destruction of at least one of the aromatic rings.  相似文献   

5.
Degradation of paracetamol in aqueous solutions by TiO2 photocatalysis   总被引:1,自引:0,他引:1  
Yang L  Yu LE  Ray MB 《Water research》2008,42(13):3480-3488
In this study, photo/photocatalytic oxidation of common analgesic and antipyretic drug, paracetamol (acetaminophen), was investigated to determine the optimal operating conditions for degradation in water. UVA (365 nm) radiation alone degraded negligible amount of paracetamol, whereas paracetamol concentration decreased substantially under an irradiation of UVC (254 nm) with marginal changes in total organic carbon (TOC). In the presence of TiO2, much faster photodegradation of paracetamol and effective mineralization occurred; more than 95% of 2.0mM paracetamol was degraded within 80 min. The degradation rate constant decreased with an increase in the initial concentration of paracetamol, while it increased with light intensity and oxygen concentration. The degradation rate also increased with TiO2 loading until a concentration of 0.8 g L(-1). The degradation rate slowly increased between pH 3.5 and 9.5, but significantly decreased with increasing pH between 9.5 and 11.0. Based on the experimental data, a kinetic equation describing paracetamol photocatalytic degradation with various process parameters is obtained.  相似文献   

6.
The degradation of reactive black 5 (RB 5), a representative diazo dye found in textile effluents, by means of ultraviolet irradiation (9W UVA) over TiO(2) suspensions, ultrasound irradiation (80kHz, 135W) and their combined application was investigated. Several commercial TiO(2) catalysts were screened and an anatase Hombicat UV 100 sample exhibited considerable activity in terms of solution decoloration, COD and ecotoxicity reduction. Photocatalytic degradation increased with increasing TiO(2) loading (in the range 0.05-1g/L) and decreasing dye concentration (in the range 120-20mg/L) and solution pH (in the range 9-2.6). At the typical conditions employed in this study (60mg/L dye, 0.25mg/L catalyst, ambient pH=5.8, oxygen sparging), complete decoloration was achieved after 60min of reaction. Addition of H(2)O(2) up to 0.01M hindered degradation, scavenging the photogenerated holes and hydroxyl radicals. Ultrasound irradiation resulted in low decoloration, e.g. less than 10% after 60min at 60mg/L dye and oxygen sparging and slightly improved under an argon atmosphere. The simultaneous application of ultraviolet and ultrasound irradiation resulted in increased decoloration compared to that achieved by photocatalysis and sonolysis operating separately; moreover, the overall sonophotocatalytic effect was greater than the additive effect of the two processes, implying possible synergy.  相似文献   

7.
Bijan L  Mohseni M 《Water research》2005,39(16):3763-3772
The overall effectiveness of integrating ozonation with biological treatment on the biodegradability enhancement and recalcitrant organic matter (ROM) removal from pulp mill alkaline bleach plant effluent was investigated. Ozonation was performed in a semi-batch bubble column reactor at pH of 11 and 4.5. Batch biological treatment was conducted in shake flasks. Samples obtained during the treatments were monitored for BOD5, COD, TOC, and molecular weight distribution. At an ozone dosage of 0.7-0.8 mg O3/mL wastewater, integrated treatment showed about 30% higher TOC mineralization compared to individual ozonation or biotreatment. Ozone treatment enhanced the biodegradability of the effluent (monitored as 21% COD reduction and 13% BOD5 enhancement), allowing for a higher removal of pollutants. The conversion of high molecular weight (HMW) to low molecular weight (LMW) compounds was an important factor in the overall biodegradability enhancement of the alkaline effluent. The overall biodegradability of the LMW compounds did not change over the course of ozonation, but it increased from 5% to 50% (measured as COD removal) for the HMW portion. Ozonation at pH of 11 was more effective than that at pH of 4.5 in terms of generating more biodegradable compounds.  相似文献   

8.
Ultraviolet (UV) filters are vital constituents of sunscreens and other personal care products since they absorb, reflect and/or scatter UV radiation, therefore protecting us from the sun’s deleterious UV radiation and its effects. However, they suffer degradation, mainly through exposure towards sunlight and from reactions with disinfectant products such as chlorine. On the basis of their increasing production and use, UV filters and their degradation products have already been detected in the aquatic environment, especially in bathing waters. This paper presents a comprehensive review on the work done so far as to identify and determine the by-products of UV filter photodegradation in aqueous solutions and those subsequent to disinfection-induced degradation in chlorinated aqueous solutions, namely swimming pools.  相似文献   

9.
Radiation-induced degradation of polyvinyl alcohol in aqueous solutions   总被引:4,自引:0,他引:4  
Zhang SJ  Yu HQ 《Water research》2004,38(2):309-316
The degradation of polyvinyl alcohol (PVA) by gamma-ray irradiation was investigated. Degradation efficiency of PVA was influenced by several factors, such as initial PVA concentration, dose rate, pH, and the addition of H2O2. The degradation kinetics depended on initial PVA concentration and dose rate. At a relatively lower PVA concentration, e.g., 180 mg/L, and a higher dose rate, e.g., 55.7 Gy/min, the degradation followed pseudo-first-order kinetics. On the contrary, at a higher PVA concentration, e.g., 500 mg/L, but a lower dose rate, e.g., 12.1 Gy/min, a pseudo-zero-order reaction occurred. The removal of PVA was more effective under acidic or alkaline conditions than that under neutral conditions. At a certain dose rate there was an optimal dosage of H2O2 to facilitate the degradation of PVA. For instance, at a dose rate of 17.2 Gy/min, the optimal H2O2 dosage was found to be about 2.5 mmol/L. Radical scavenging experiments, total organic carbon determination, and FTIR analysis on the degradation products demonstrated that PVA radiolysis was initiated by *OH and H*, leading to chain scission and formation of ketones/enols. Ultimately, complete mineralization of PVA was achieved.  相似文献   

10.
The increase in mineralization and biodegradability of natural organic matter (NOM) by ozone-vacuum ultraviolet (VUV) in comparison with ozone, VUV, ozone-ultraviolet (UV), and UV were investigated. The effects of operating parameters including pH and ozone dose were evaluated. Results showed that the mineralization rate of dissolved organic carbon (DOC) provided by the processes tested was in the following order: ozone-VUV > VUV > ozone-UV > ozone > UV. Among three pH studied (7, 9, and 11), pH 7 provided the highest DOC mineralization rate and biodegradability increase. A synergistic effect was observed when combining ozone with UV or VUV at pH 7 and 9 but not at pH 11. The oxidized NOM samples were separated into six fractions based on polarity (hydrophobic/hydrophilic) and charge (acid/neutral/base) to reveal NOM characteristic changes. Ozone-VUV was effective in mineralizing hydrophobic neutral and acid fractions. The hydrophilic neutral fraction was a major NOM fraction after oxidation (39-87%) and was contributed to by the biodegradable DOC produced during oxidation. High performance size exclusion chromatography results revealed that the combination of UV or VUV with ozone was more effective in the decomposition of high molecular weight compounds than ozone alone.  相似文献   

11.
The complexation of iron ions with the herbicide tebuthiuron (TBH), during a solar photo-Fenton process, was investigated using cyclic voltammetry with a glassy carbon electrode. An oxidation peak was observed at +0.64 V after addition of Fe(NO3)3 to TBH solution, indicating the formation of a Fe-TBH complex, which was not observed in the presence of ferrioxalate or citrate complexes. This complexation hinders photoreduction of Fe(III), and consequently TBH degradation. The main degradation route, in the presence or absence of citric acid (in the latter case with Fe(NO3)3 only), is initiated by the hydroxylation of a terminal methyl group of the urea, indicating an identical degradation mechanism. Hydroxylation of the central methyl of urea, and of the tert-butyl group, was also observed after extended irradiation periods in the presence of citric acid, but was not observed in the presence of Fe(NO3)3, due to a slower degradation rate in the absence of the citrate complex. No intermediate, generated from opening of the thiadiazole ring, was identified under the various different conditions.  相似文献   

12.
Li XY  Cui YH  Feng YJ  Xie ZM  Gu JD 《Water research》2005,39(10):1972-1981
Laboratory experiments were carried out on the kinetics and pathways of the electrochemical (EC) degradation of phenol at three different types of anodes, Ti/SnO2-Sb, Ti/RuO2, and Pt. Although phenol was oxidised by all of the anodes at a current density of 20 mA/cm2 or a cell voltage of 4.6 V, there was a considerable difference between the three anode types in the effectiveness and performance of EC organic degradation. Phenol was readily mineralized at the Ti/SnO2-Sb anode, but its degradation was much slower at the Ti/RuO2 and Pt anodes. The analytical results of high-performance liquid chromatography (HPLC) and gas chromatography coupled with mass spectrometry (GC/MS) indicated that the intermediate products of EC phenol degradation, including benzoquinone and organic acids, were subsequently oxidised rapidly by the Ti/SnO2-Sb anode, but accumulated in the cells of Ti/RuO2 and Pt. There was also a formation of dark-coloured polymeric compounds and precipitates in the solutions electrolyzed by the Ti/RuO2 and Pt anodes, which was not observed for the Ti/SnO2-Sb cells. It is argued that anodic property not only affects the reaction kinetics of various steps of EC organic oxidation, but also alters the pathway of phenol electrolysis. Favourable surface treatment, such as the SnO2-Sb coating, provides the anode with an apparent catalytic function for rapid organic oxidation that is probably brought about by hydroxyl radicals generated from anodic water electrolysis.  相似文献   

13.
An aerobic bacterial consortium (Consortium A) was recently obtained from textile wastewater and was capable of degrading 4-nonylphenol and nonylphenol polyethoxylates (NPnEOs). In the perspective of developing a biotechnological process for the treatment of effluents from activated sludge plants fed with NPnEO contaminated wastewater, the capability of Consortium A of biodegrading an industrial mixture of NPnEOs in the physiological condition of immobilized cells was investigated. Two identically configured packed bed reactors were developed by immobilizing the consortium on silica beads or granular activated carbon. Both reactors were tested in batch and continuous mode by feeding them with water supplemented with NPnEOs. The two reactors were monitored through chemical, microbiological and molecular integrated methodology. Active biofilms were generated on both immobilization supports. Both reactors displayed comparable NPnEO mineralization under batch and continuous conditions. FISH analyses evidenced that the biofilms evolved with time by changing the reactor operation mode and the organic load. Taken together, the data collected in this study provide a preliminary strong indication on the feasibility of Consortium A-based biofilm technology for the decontamination of NPnEO containing effluents.  相似文献   

14.
The electrochemical treatment of olive mill wastewaters (OMW) over boron-doped diamond (BDD) electrodes was investigated. A factorial design methodology was implemented to evaluate the statistically important operating parameters, amongst initial COD load (1000-5000 mg/L), treatment time (1-4 h), current intensity (10-20 A), initial pH (4-6) and the use of 500 mg/L H2O2 as an additional oxidant, on treatment efficiency; the latter was assessed in terms of COD, phenols, aromatics and color removal. Of the five parameters tested, the first two had a considerable effect on COD removal. Hence, analysis was repeated at more intense conditions, i.e. initial COD values up to 10,000 mg/L and reaction times up to 7 h and a simple model was developed and validated to predict COD evolution profiles. The model suggests that the rate of COD degradation is zero order regarding its concentration and agrees well with an electrochemical model for the anodic oxidation of organics over BDD developed elsewhere. The treatability of the undiluted effluent (40,000 mg/L COD) was tested at 20 A for 15 h yielding 19% COD and 36% phenols' removal respectively with a specific energy consumption of 96 kW h/kg COD removed. Aerobic biodegradability and ecotoxicity assays were also performed to assess the respective effects of electrochemical treatment.  相似文献   

15.
The degradation of organic matter in coloured solutions of different classes of dyes by ozonation in the presence of activated carbon is investigated. The kinetics of the decolourisation and mineralisation of three different dyes solutions (CI Acid Blue 113, CI Reactive Red 241 and CI Basic Red 14) were studied in a laboratory scale reactor by three different processes: adsorption on activated carbon, oxidation with ozone and ozonation in the presence of activated carbon. The mineralisation of the solutions was followed by measuring the total organic carbon (TOC). Under the experimental conditions used in this work, activated carbon was not capable of completely removing the colour of the solutions in reasonable time. On the other hand, ozonation quickly decolourised all the solutions, but satisfactory removal of TOC was never achieved by this process. The combination of activated carbon with ozone enhanced the decolourisation of the solutions and especially the mineralisation of the organic matter. Activated carbon acts both as an adsorbent and as a catalyst in the reaction of ozonation. The surface chemistry of the activated carbon is an important parameter; it was observed that basic samples improve TOC removal. The main conclusions of this work were validated by treating a real textile effluent collected after the conventional biological treatment.  相似文献   

16.
Haomin Xu 《Water research》2011,45(2):632-638
Amoxicillin is a widely used antibiotic and has been detected in natural waters. Its environmental fate is in part determined by hydrolysis, and, direct and indirect photolysis. The hydrolysis rate in distilled water and water to which five different isolated of dissolved organic matter (DOM) was added, were evaluated. In the five different DOM solutions hydrolysis accounted for 5-18% loss of amoxicillin. Direct and indirect photolysis rates were determined using a solar simulator and it appeared that indirect photolysis was the dominant loss mechanism. Direct photolysis, in a solar simulator, accounted for 6-21% loss of amoxicillin in the simulated natural waters. The steady-state concentrations of singlet oxygen, 1ΔO2 (∼10−13 M) and hydroxyl radical, •OH (∼10−17 M) were obtained in aqueous solutions of five different dissolved organic matter samples using a solar simulator. The bimolecular reaction rate constant of 1ΔO2 with amoxicillin was measured in the different solutions, kΔO2 = 1.44 × 104 M−1 s−1. The sunlight mediated amoxicillin loss rate with 1ΔO2 (∼10−9 s−1), and with •OH (∼10−7 s−1), were also determined for the different samples of DOM. While 1ΔO2 only accounted for 0.03-0.08% of the total loss rate, the hydroxyl radical contributed 10-22%. It appears that the direct reaction of singlet and triplet excited state DOM (3DOM) with amoxicillin accounts for 48-74% of the loss of amoxicillin. Furthermore, the pseudo first-order photodegradation rate showed a positive correlation with the sorption of amoxicillin to DOM, which further supported the assumption that excited state DOM plays a key role in the photochemical transformation of amoxicillin in natural waters. This is the first study to report the relative contribution of all five processes to the fate of amoxicillin in aqueous solution.  相似文献   

17.
Four Beijing wastewater treatment plants (WWTPs) were selected to investigate behaviours of nonylphenol polyethoxylates and their metabolites in different wastewater treatment processes. The results showed that the total concentrations of nonylphenolic compounds in the influents of the four WWTPs ranged from 0.115 to 0.347 μmol/L, as well as their removal efficiencies ranging from 75.7% to 90.8%. Both influent concentrations and removal efficiencies of nonylphenol polyethoxylates were correlated to seasons as follows: higher in the summer than in the winter, and influent concentrations were lower during the rain weather. The analysis revealed that 21.8-47.6% of nonylphenol polyethoxylates and their metabolites entering WWTPs were released via effluents and excess sludge, leaving a great part of them for biodegradation. Nonylphenol and short-chain nonylphenol polyethoxylates were disposed to the environment mainly via sewage sludge, while carboxylated nonylphenol polyethoxylates were the most abundant group of nonylphenol polyethoxylates in effluents.  相似文献   

18.
The removal and degradation characteristics of natural and synthetic estrogens by activated sludge were investigated by a series of batch experiments using the activated sludge samples of four actual wastewater treatment plants and synthetic wastewater spiked with estrogen. The rapid removal and degradation of 17β-estradiol (E2) and estrone (E1) were observed by the activated sludge samples of the oxidation ditch process which operated at higher solids retention time (SRT). On the other hand, E1 tended to remain both in the water phase and the sludge phase in the activated sludge samples of the conventional activated sludge process which operated at lower SRT. The anoxic condition was considered to be not favorable to the effective removal of estrogens as compared with the aerobic condition. The removal and degradation of EE2 showed the lag phase, which neither E2 nor E1 showed, but EE2 was finally removed and degraded completely after 24 h. The removal of estrogens in the water phase did not follow the first-order-rate reaction because a large part of the spiked estrogen was immediately removed from the water phase to the sludge phase by adsorption.  相似文献   

19.
This study investigated the degradation pathway of creatinine (a urine metabolite) with immobilized titanium dioxide photocatalysts. The degradation of creatinine was studied at three different pH values (acidic, neutral and basic) in the absence of buffering solutions. The intermediates formed were identified by using electrospray ionization mass spectrometer (ESI-MS) in both negative and positive ion mode. Two distinct mechanistic pathways which govern the photocatalytic degradation of creatinine irrespective of the pH of the initial solution were identified. The initial solution pH affected only the selectivity between the two mechanisms. The primary oxidation steps of creatinine with hydroxyl radicals included demethylation, hydrogen abstraction, hydroxylation, oxidation, and ring opening. At acidic pH, additional transformation steps of the two mechanisms were identified. The intermediates detected in the positive ion mode, contained at least one atom of nitrogen in their structure, explaining the observed low nitrogen mineralization of creatinine with TiO2 photocatalysis. The intermediates in the negative ion mode were low molecular weight organic acids that contained only carbon and hydrogen atoms.  相似文献   

20.
Shiyun Z  Xuesong Z  Daotang L 《Water research》2002,36(5):1237-1243
Ozonation of 11 naphthalene sulfonic acids (NSA) in the aqueous solution was studied by bubbling at 31 degrees C at an ozone dose rate of 5.56 mg min(-1) l(-1). COD, TOC and BOD5 of these compounds were tested. It was found that COD and TOC can be removed effectively by ozonation as expected. More than 40% COD of compounds No. I (2-amino-1-NSA), No. 5 (1-hydroxy-7-amino-5-NSA), No. 6 (6-hydroxy-1-NSA), No. 8 (6-amino-1,4-naphthalene disulfonic acid) and No. 11 (I -hydroxy-6-amino-3-NSA) has been eliminated at an ozone dosage of 5.56 mg min(-1) l(-1) for 2 h. Although TOC removal was very different, a good biodegradability was reached for NSAs with an average ozone consumption of 3.0 mgl(-1) for a TOC0 concentration of 100 mg(-1). Ozonation and biotreatment should be good alternatives for these compounds, especially after 20% TOC reduction and TOC removal were more sensitive in predicting an increase in biodegradability during ozonation, than that of COD. NSAs are similar in their behavior with reference to ozone consumption. In order to obtain a good biodegradability of NSAs at a TOC0 concentration of 100 mgl(-1), an ozone consumption between 2.0 and 4.0 mg mg(-1) ACOD is needed for this setup and 3.0 mg O3 mg(-1) TOC0 requirement may be more practical in predicting the biological behavior of naphthalene compounds.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号