首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
用非平衡溶剂萃取法分离钴镍的研究   总被引:3,自引:0,他引:3  
以二-(2-乙基己基)磷酸(代号为P_204)作萃取剂,研究了用非平衡溶剂萃取法从氨性硫酸盐溶液中分离钴镍过程中,水相平衡pH值、两相混合时间、空气氧化时间和负载有机相用硫酸反萃等因素对分离钴镍的影响.结果表明:在水相中添加适量的(NH_4)_2S_2O_8或让料液在空气中自然氧化,均可使钴(Ⅱ)氧化成动力学惰性配合物一钴(Ⅲ)氨配离子.此时钴的萃取速率较慢,而镍的萃取速率较快,控制两相混合时间,用非平衡溶剂萃取法可有效分离钴镍.用稀硫酸溶液从负载有机相中反萃镍,镍反萃率可达99%以上.  相似文献   

2.
本方法是用叔基一元羧酸作为萃取剂,钴就可以从含有镍钴的浓氨溶液中提取出来。在萃取过程中,有机相优先将钴萃取,镍留在净化溶液中,在有机相中回收钴,将钴变成盐,或变成氧化物或金属粉末。镍可用任何合适的技术从净化溶液中回收,如萃取法、硫化沉淀。然后回收铵盐。  相似文献   

3.
Chinmaypanija等通过试验,确定了从含硫酸铵的溶液中溶剂苹取镍的工艺参数。溶液中,p(NH4)2SO4)=24kg/m3,p(Ni)=20kg/m3,不含钴;萃取剂为LIX84-I,稀释剂为煤油,(LIX84-1)=40%。在相比为1时,通过一级萃取,可将水相中大于99%的镍萃入到有机相中,同时有少量氨也被萃入到有机相中。试图从负载有机相中选择性除去氨没能成功,但因为氨的含量很少,所以也就允许它转入到反革取液中。对含镍的负载有机相,用100kg/m3的H2SO4溶液在Va:Vo=1:3.5条件下,以4级逆流方式进行反萃取,镍的反萃取率大于99%。这种再…  相似文献   

4.
柯英 《有色冶炼》2001,30(4):10-12,43
钴壳用二氧化硫气体作还原剂进行了氨浸,研究了浸出时间,浸出温度和碳酸铵浓度对镍、钴、铜、铁和锰浸出的影响,二氧化硫作还原剂,用碳酸铵溶液可实现从钴壳中选择性浸出镍,钴 和铜,在适当的浸出条件下,金属元素的浸出率分别为Ni90%,Co97%,Cu93%,Fe1.8%和Mn6.0%。使用溶剂萃取从碳酸铵溶液中分离镍、钴和铜,萃取试验用LIX-84作萃取剂,铜和镍的萃取率在99%以上,钴则在1.0%以下,钴的萃取被亚硫酸盐离子遮蔽,含有镍和铜的有机相用稀硫酸或盐酸在pH=1.7时反萃镍,pH=0时反萃铜。  相似文献   

5.
钴壳用二氧化硫气体作还原剂进行了氨浸,研究了浸出时间、浸出温度和碳酸铵浓度对镍、钴、铜、铁和锰浸出的影响.二氧化硫作还原剂,用碳酸铵溶液可实现从钴壳中选择性浸出镍、钴和铜.在适当的浸出条件下,金属元素的浸出率分别为Ni90%,Co97%,Cu93%,Fe1.8%和Mn6.0%.采用溶剂萃取从碳酸铵溶液中分离镍、钴、和铜.萃取试验用LIX-84作萃取剂,铜和镍的萃取率在99%以上,钴则在1.0%以下.钴的萃取被亚硫酸盐离子遮蔽.含有镍和铜的有机相用稀硫酸或盐酸在pH=1.7时反萃镍,pH=0时反萃铜.  相似文献   

6.
多金属结核氨浸液中镍钴铜的萃取分离   总被引:2,自引:0,他引:2  
采用LIX84从氨性溶液中萃取分离镍、钴、铜。首先采用 5级逆流共萃铜、镍 ,钴留在萃余液中 ,含铜、镍的负载有机相经二级洗涤氨 ;用镍电解废液进行 7级逆流选择性反萃镍 ,实现镍与铜的初步分离 ;然后从含铜有机相中反萃铜得到纯净的硫酸铜溶液 ,选择性反萃镍得到含有少量铜的粗镍液 ,该液仍采用LIX84萃取脱铜 ,并回收铜 ,从而将铜、镍彻底分离 ,实现了用一种萃取剂分离氨浸液中的镍、钴、铜。联动连续运转试验结果表明 ,采用本研究确定的萃取工艺流程和萃取设备处理氨浸液 ,萃取分离效果好 ,试验结果稳定、可靠。金属回收率高 ,萃取回收率分别为 ( %) :Ni 99 0 ,Co 99 7,Cu 99 9。  相似文献   

7.
介绍了一种全界面高效萃取分离钴、镍的新设备。利用自主研发的多相流涡轮增压反应器切割混合水相和有机相,使两相物料以微米级形态接触,增大了萃取反应相内接触表面积和反应动力学,克服了机械混合的缺点,使两相分离速度加快,而且不产生第三相,萃取反应级数从传统的9级降为3级,设备投入减少。优化后的镍、钴萃取分离工艺试验结果表明:在萃取剂与硫酸镍溶液体积比为1∶3、萃取剂皂化率50%~55%、反应温度45℃、3级逆流萃取条件下,钴萃取率达99.9%,萃余液中钴离子质量浓度达到要求(1mg/L)。  相似文献   

8.
用N.M.C.法分离钴和镍   总被引:1,自引:1,他引:0  
用2-乙基-1-己基磷酸单2-乙基-1-己基脂(M2EHPA)从硫酸镍溶液中分离钴的方法进行了研究。M2EHPA的分离系数比D2EHPA大很多倍(D2EHPA是熟知的一种阳离子交换萃取剂)。 使用3级混合澄清装置,将含20%(体积)M2EHPA的有机试剂与含30克/升镍和12克/升钴的原始水溶液接触后,能获得这样的结果:萃余相含29.9克/升镍和0.002克/升钴,萃取相含0.14克/升镍和12克/升钴。将萃取相与含有CoSO_4的洗涤液混合,能有效地从有机相中除掉镍;与稀硫酸溶液接触很容易从有机相中反萃取出钴。在工业性设备中,是使用钴电解工序的废电解液作为反萃取液。使用N.M.C.法,反萃取液中的钴浓度被控制在100克/升左右。 根据本研究的结果,建立了一种分离钴和镍的方法。日本矿业公司利用这种方法,目前已能有效地分别生产出1300吨/年和3300吨/年高纯的钴和镍。  相似文献   

9.
本文研究了在搅拌槽内镍、钴萃取的传质动力学过程。萃取体系由高镍、低钴的硫酸盐水相料液和10%P507(M_2EHPA)-煤油有机相组成。两相混合传质过程在方形挡板搅拌槽内进行。实验结果表明,P507萃取镍、钴的萃取速度均较快,但一般情况下钴的萃取速度比镍快。在萃取过程中,搅拌输入功率是一个重要的控制因素,较低的输入功率,适中的停留时间对镍、钴的萃取分离较为有利。  相似文献   

10.
采用溶剂萃取法,研究了用氨皂化的Cyanex272(二(2,4,4-三甲基戊基)次膦酸)对镍离子含量为25 g·L~(-1),钴离子含量为0.1 g·L~(-1)的氯化镍水溶液进行二级萃取除去溶液中杂质钴过程。考察了萃取振荡时间、有机相与水相比例(O/A)、初始水相pH值和Cyanex272体积浓度等因素对钴、镍离子萃取的影响。在单因素实验的基础上进行了正交试验,分别确定了各因素对钴、镍离子的影响主次关系。在综合考虑情况下确定了优化的工艺条件为:振荡时间为30 min、相比(O/A)为0.10∶1.00、初始水相pH值为5、 Cyanex272体积浓度为15%。此时,镍离子的损失率为10.84%,钴离子的萃取率为99.11%,水相中钴离子浓度为0.83×10~(-6)。通过红外光谱分析可知,钴、镍离子均会与萃取剂发生阳离子交换反应,且在钴、镍离子同时存在时,萃取剂与钴离子的结合要优于同镍离子的结合。  相似文献   

11.
从大洋多金属结核氨浸液中萃取分离铜,镍,钴   总被引:4,自引:0,他引:4  
用LIX84的煤油溶液作萃取剂,从大洋多金属结核的催化还原氨浸溶液中选择性共萃铜和镍,而钴等留在萃余液中,然后选择反萃镍和铜,再生有机相循环使用,铜和镍溶液可用电积回收铜和镍。本工艺只需一种萃取剂便可有效地将铜、镍、钴三者彼此分离,操作简便,可用于处理大洋多金属结核或其它含铜、镍、钴的复杂矿  相似文献   

12.
从钴白合金的酸性浸出液中选择性萃取铁   总被引:1,自引:0,他引:1  
研究了用TBP作萃取剂,从含铁、铜、钴的酸性浸出液中萃取铁。试验结果表明,当有机相中TBP体积分数为70%,接触时间3 min,VO/VA=2/1,料液中[H ]为1.5 mol/L,[Cl-]为190 g/L时,铁的萃取效果最佳,其萃取率大于99.6%,铁与铜、钴的分离系数分别在3×103与4.5×103以上,而且有机相中无萃取污物产生。反萃取试验结果表明,用纯净水反萃取铁,在VO/VA=5/1条件下,经过5级反萃取,铁的反萃取率可达到98.8%。  相似文献   

13.
考察了萃取剂用量、萃取剂皂化率、相比、萃取时间及pH等因素对从镍氢电池正极酸浸液中萃取分离钴镍的影响。试验结果表明:以8%Cyanex272+92%煤油为萃取剂,在pH=5.0、有机相皂化率70%、Vo∶Va=1∶1、萃取时间3min、温度25℃条件下,钴萃取率达90%左右,Ni萃取率只有1%左右,二者分离效果较好,工艺运行稳定。  相似文献   

14.
P.E.Tsakiridis和S.Agatzini—Leonardou研究了用有机膦萃取剂Cyanex272从钴、镍、镁的硫酸盐溶液中萃取和分离铝。为了确定平衡时的萃取pH、温度、萃取剂浓度和有机相与水相体积比的主要影响和相互作用,采用了统计设计与分析。也进行了用硫酸溶液反萃取负载于Cyanex272有机相上的铝的统计设计试验。估算了萃取和反萃取铝所需的段数。连续逆流小型工厂试验结果证实了从钴、镍、镁的硫酸盐溶液中回收铝。  相似文献   

15.
一、基本原理萃取的基本原理,就是利用与水相不混溶的有机溶剂从水相(溶液)中选择性地提取某成分的过程。其实质是溶质在两种不相混溶的液相中的分配(扩散)过程。萃取法的基本程序为萃取与反萃取。萃取是有机溶剂选择性地从溶液中提取某些成分,即溶质从水相中扩散到有机相中去;反萃取是溶质从有机溶剂(有机相)扩散到新水相中去。用化学符号R_3N表示N_(235)萃取剂,以工业氨水为反萃取剂,萃取钼铼过程中的  相似文献   

16.
本文介绍了一种从酸性含钨有机相中把钨反萃取到碱性氨反剂中的方法。它采用高剪切力的混合装置,将有机相和反剂混合,使有机相和水相间的PH梯度达到最大,借此使沉淀出的仲钨酸铵晶体的生长速度减列最小而达到最大限度的溶解,把有机相中的钨反萃取到反剂中。  相似文献   

17.
废旧三元电池正极活性材料盐酸浸出得到含金属钴、锰、镍、锂的浸液,比较选择了新型萃取体系Aliquat336+TBP/煤油共萃取钴锰并分离镍锂,提出了浸液中回收有价金属的新方法。研究了萃取剂种类、修饰剂、萃取剂浓度和相比等因素对钴锰共萃取分离镍和锂的影响。研究表明,当浸出液中氯离子浓度高于6.5M时,Aliquat336+TBP在煤油稀释剂中能够有效萃取钴锰分离镍锂,其它胺类萃取剂如Alamine 304、Alamine 308和Alamine336萃取效果明显低于Aliquat 336。优化条件下Aliquat 336+TBP体系对Co/Mn、Co/Ni和Co/Li分离系数分别为7、1 061、3 183;Mn/Ni和Mn/Li分离系数分别为156和468,表明钴锰能实现高效共萃,并与镍锂高效分离。TBP在体系中主要作为相修饰剂,但对钴锰的萃取起到了协同萃取的效果。采用Aliquat 336+TBP萃取体系共萃取钴锰,设计了废旧三元电池正极活性材料盐酸浸出液中回收钴镍锰锂的新方法。  相似文献   

18.
<正>Mehdi Ghadiria等研究了用叔胺从水溶液中萃取钼。萃取剂为三辛胺(TOA),改性剂为磷酸三丁酯(TBP),煤油为稀释剂。考察了TOA和TBP的浓度、水相初始pH、有机相与水相体积比、接触时间、稀释剂类型及水相中金属离子浓度等对萃取钼的影响,以及用氢氧化铵溶液作反萃取剂从负载钼的有机相中反萃取钼。试验结果表明:在4%三辛胺+12%磷酸三丁酯+84%煤油、Vo/Va=1∶1、水相初  相似文献   

19.
以Cu-NH_3-NH_4Cl-H_2O体系为研究对象,TXIB(2,2,4-三甲基-1,3-戊二醇双异丁酸酯)为改质剂,考察TXIB用量、萃取剂浓度、萃取相比、水相铜浓度、氨浓度等对萃取剂Mextral973H从铜氨溶液中萃取铜及氨的影响。结果表明,TXIB的使用可以显著降低氨的共萃而不影响铜的萃取。在萃取相比O/A=1/1、有机相浓度20%、铜浓度18.0g/L、氨浓度84.0g/L的条件下,向有机相中添加10%的TXIB后,铜萃取率由60.44%变化为60.20%,有机相共萃氨量从410.2mg/L降至154.8mg/L。  相似文献   

20.
研究了用HBL110从高浓度硫酸钴溶液中溶剂萃取镍,考察了有机相配比、有机相皂化率、料液初始pH、相比、温度及萃取时间对镍萃取效果的影响。试验结果表明:在有机相组成n(A)∶n(HB)=4∶1、有机相皂化率50%、料液初始pH=2、相比(Vo/Va)=2/1、萃取时间10min、室温下通过5级逆流串级萃取,高浓度硫酸钴(70g/L钴)溶液中的镍得以去除,最终溶液中镍质量浓度仅30mg/L左右,镍去除率达98.13%。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号