首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 15 毫秒
1.
通过一种铌微合金钢高温下(900~1100℃)不同应变速率(0.01~10s<'-1>)的热模拟单道次压缩试验,结合组织观察,研究了热变形参数对动态再结晶过程的影响,求出动态再结晶形变激活能及相关参数,建立了该钢的热变形本构方程.实验结果表明,合金元素的添加,由于固溶原子拖曳及析出物的钉扎作用,增加了动态再结晶激活能,显著抑制了该钢的动态再结晶及晶粒长大过程.原始奥氏体晶粒尺寸增大、变形温度降低及应变速率增大将抑制动态再结晶过程.  相似文献   

2.
为了研究Mg-Zn-Zr-Gd合金的热压缩变形行为,采用Gleeble-3500型热模拟试验机,在变形温度为300~400℃,变形速率为0.001~1 s-1条件下对合金进行热压缩实验。分析了在不同的热压缩条件下合金的真应力-真应变曲线,通过引入Z参数建立了相关流变应力本构方程,同时观察了合金的微观组织演变。结果表明:合金在热压缩变形过程中主要发生了动态再结晶,且合金的流变应力随着应变速率降低和温度升高而减小。在低变形温度或高应变速率下进行热压缩变形时,再结晶晶粒比较细小,但是动态再结晶进行不充分,动态再结晶仅仅发生在晶界处且分布不均匀,仍然存在原始大晶粒。随着变形温度的升高和应变速率的降低,再结晶区域明显增加,再结晶晶粒也逐渐长大。根据热加工图分析得到合金最佳的热加工成形工艺区域为:温度为350~400℃,应变速率为0.1~1 s-1。  相似文献   

3.
采用Gleeble-1500热模拟实验机在变形温度为800~1100℃,应变速率为0.1~10 s-1范围内对27MnCr5齿轮钢进行热压缩实验,研究27MnCr5齿轮钢的动态再结晶行为,构建合金的本构关系和动态再结晶模型,研究变形条件对27MnCr5齿轮钢显微组织的影响。结果表明:变形温度越高,27MnCr5齿轮钢的流动应力越低,动态再结晶体积分数越高;当变形温度升高至1100℃时,晶粒粗化现象很明显,平均晶粒尺寸较大;利用Deform软件对构建的动态再结晶模型进行数值模拟,平均晶粒尺寸误差在20%以内,应力-应变本构关系和动态再结晶模型能较好的预测实验结果。  相似文献   

4.
采用Gleeble-3500热压缩实验机对Mg-13Gd-4Y-2Zn-0.5Zr合金在温度360~480℃、应变速率0.001~1 s-1、最大变形程度为60%的条件下进行高温压缩实验研究。分析了应变速率和变形温度对该合金在高温变形时流变应力的影响,引入温度补偿应变速率因子Z构建合金高温流变应力的本构方程;研究了合金在不同压缩条件下的组织变化及动态再结晶晶粒尺寸,为后续有限元组织模拟提供了实验依据。结果表明:该合金的真应力-真应变曲线具有动态再结晶曲线的特征。动态再结晶的再结晶晶粒尺寸随温度的降低、应变速率的增大而减小;而且峰值应力也随再结晶晶粒尺寸的减小而增大。  相似文献   

5.
GH761合金的热变形行为与动态再结晶模型   总被引:6,自引:0,他引:6  
采用Gleeble-3500热模拟试验机研究GH761合金在变形温度为900~1150℃,应变速率为0.1~30s-1条件下的热变形行为,建立了GH761合金在热态变形过程中的本构方程.采用Quantiment-500型自动图像分析仪定量测定试样中的动态再结晶晶粒尺寸和再结晶体积分数.根据实验结果,建立了GH761合金动态再结晶过程的物理模型,为科学设计和有效控制GH761合金的锻造工艺提供理论依据.  相似文献   

6.
为了研究中碳含钒微合金非调质钢的热变形行为,在变形温度900~1100℃C和应变速率0.01~10 s~(-1)下通过Gleeble-3500热模拟试验机进行了单道次热压缩试验。结果表明:试验钢因热变形而产生加工硬化,使应力得到提升,应力会随着应变速率的提高和热加工温度的降低而有明显的提升,峰值应力随之升高;通过计算得到试验钢的热变形激活能为285.242kJ/mol,并由此得到了试验钢的本构方程;热压缩过程中试验钢发生了动态再结晶,当发生完全动态再结晶时,应变速率较低和温度较高的试样其晶粒尺寸要比应变速率高和温度较低的试样的晶粒尺寸大。  相似文献   

7.
通过对铸态Mg-3Sn-1Mn-1La合金在变形温度为200~450℃、应变速率为0.001~1.0s~(-1)条件下进行热压缩实验,研究了其热变形行为和微观组织变化规律。结果表明:随着变形温度的降低和应变速率的升高,流变应力明显增大而再结晶晶粒尺寸减小。在变形温度较低的条件下,连续动态再结晶是主要的再结晶机制。然而,当变形温度升高时,非连续动态再结晶机制占主导。分析和修正了摩擦和变形热对流变应力的影响。结果表明,与摩擦相比变形热对流变应力的影响更加明显,且随着应变速率的增加和变形温度的降低,变形热对流变应力的影响更加明显。在实验数据的基础上建立了应变修正的本构方程。通过对实验值与预测值的对比发现,所建立的本构方程能够准确地描述实验合金的热变形行为。  相似文献   

8.
采用Gleeble-3800热模拟试验机研究了N08811耐热合金在变形温度为900~1150℃、变形速率为0.1~5 s-1条件下的高温变形行为。结果表明,N08811合金的流变应力随着应变速率的增大及变形温度的下降而增加,是一种正应变速率敏感材料。通过对显微组织的研究,发现当应变速率为1 s-1时,N08811合金优先在变形晶粒的晶界处发生动态再结晶,再结晶晶粒数目及尺寸均随变形温度的升高而增加,至变形温度为1150℃时已发生完全再结晶。当变形温度一定时,高应变速率会降低N08811合金的再结晶温度,增加晶粒尺寸。依据真应力-真应变曲线,采用双曲正弦本构模型建立了N08811合金的流变应力本构方程,得到其热变形激活能为509.998 kJ·mol-1。  相似文献   

9.
利用物理模拟实验方法对具有不同晶粒尺寸的690合金试样进行热压缩变形实验,变形温度范围为1100~1200℃,应变速率分别为0.1,1,10s-1,获得了合金的流变应力数据,并对合金变形后的组织特征进行了分析,建立了包含初始晶粒度参数的本构关系模型。结果表明:晶粒尺寸增大使690合金高温变形时的流变应力增加,发生动态再结晶的临界应变增大,动态再结晶体积分数减小,根据所建立的流变应力本构模型计算出的流变应力值与实验值相近,从而完善了690合金的热变形本构方程。  相似文献   

10.
高杨 《铸造技术》2014,(9):1915-1917
对Cu-Cr-Zr合金进行了热压缩变形实验,并建立了热变形本构方程和热加工图。结果表明,Cu-Cr-Zr合金的最佳变形条件为:变形温度780℃、应变速率0.01 s-1。随变形温度的升高,Cu-Cr-Zr合金显微组织先后发生动态回复和动态再结晶,逐渐替代纤维状晶粒并长大成等轴晶粒。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号