首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
表面粗糙度模型是研磨过程设计和工艺参数选择的重要依据,K9玻璃是应用最广泛的光学材料之一。建立研磨K9玻璃表面粗糙度模型有利于提高加工效率、节约生产成本。简化固结磨料研磨过程,基于研磨垫表面微结构,计算研磨过程中参与研磨的有效磨粒数和单颗磨粒切入工件深度,利用研磨过程中受力平衡,建立固结磨料研磨K9玻璃表面粗糙度模型。采用不同磨粒粒径和不同磨料浓度的固结磨料研磨垫以及不同压力研磨K9玻璃验证表面粗糙度模型。结果表明:固结磨料研磨K9玻璃的表面粗糙度与磨粒粒径、研磨压力1/3次方成正比,与研磨垫浓度2/9次方成反比。表面粗糙度理论值与试验值随研磨压力、磨粒粒径和研磨垫浓度的变化趋势吻合。利用该模型能够成功预测固结磨料研磨K9玻璃表面粗糙度,指导研磨过程设计及加工过程中研磨垫和工艺参数的选择,可靠性高。  相似文献   

2.
通过分析磨粒与工件表面的作用过程,建立了硬脆性材料柔性磨具加工表面粗糙度的理论预测模型.以橡胶结合剂金刚石研磨盘为柔性磨具、蓝宝石衬底为工件,在不同弹性模量、磨粒浓度、磨粒粒度和研磨压力下开展研磨试验,将不同研磨条件下的表面粗糙度试验值与理论预测值进行比较,发现试验结果与理论模型预测结果的趋势一致,且预测误差为7.71...  相似文献   

3.
为了实现对蓝宝石晶体的高效低损伤研磨加工,对蓝宝石晶体的双面研磨加工表面粗糙度、研磨均匀性和亚表面损伤层的深度进行试验研究。采用280#碳化硼磨粒双面研磨(0001)面蓝宝石晶体,首先考察了研磨时间对材料去除速率、表面粗糙度的作用规律,根据蓝宝石晶体切割表面状态确定了双面研磨的加工余量,接着,通过WYKO粗糙度仪从微观上分析了蓝宝石晶体表面的研磨均匀性,最后应用纳米压入测试分析了亚表面损伤层的深度。实验结果表明:蓝宝石晶体经过120分钟的双面研磨加工后可以获得Ra0.523μm,Rt<6.0μm的表面,亚表面损伤层小于1μm。  相似文献   

4.
Lapping and electropolishing (EP) experiments for tungsten carbide blocks were executed. The effectiveness of the lapping experiment is evaluated in terms of the material removal rate, the surface roughness, and wear of the workpiece. The material removal rate describes the thickness removal of the workpiece under a fixed surface area. Wear describes a microscopic study of the wear track. The results show that the material removal and surface roughness increase as the grain size of the abrasive increases. Four main wear mechanisms -- abrasive wear, fracture, adhesive wear and scratch -- are observed during the lapping of tungsten carbide using silicon carbide abrasive. In the electropolishing experiment, four different machining characteristics -- sub-electropolishing, crack, electropolishing, and pitting -- can be analyzed as the applied current is increased. Although material removal is close to Faraday’s law during electropolishing, it disagrees with Faraday’s law after 400 s of sub-electropolishing.  相似文献   

5.
光纤端面研磨加工机理研究   总被引:8,自引:2,他引:6  
给出了研磨光纤时的材料去除机理,选用粒度为微米及亚微米级的金刚石磨料砂纸,在研磨压力为0.48Mpa时,在KE-OFP-12型光纤连接器研磨机上对光纤端面进行了研磨实验.结果表明:光纤研磨加工的材料去除存在脆性断裂、半脆性半延性、延性等3种模式.材料去除模式主要取决于磨料的平均粒度,磨料粒度为3μm时,为脆性断裂到延性研磨的临界转换点.并从理论上对结果进行了分析,光纤以延性模式研磨加工时,光纤表面粗糙度Ra可达到纳米级,其表面看不到任何划痕,而光纤以脆性断裂模式研磨加工时,其表面粗糙度只能达到亚微米级,证明材料以延性模式去除是提高光纤表面质量的有效方法.  相似文献   

6.
硬盘巨磁电阻磁头的超精密抛光工艺   总被引:1,自引:0,他引:1  
申儒林 《中国机械工程》2007,18(18):2241-2245
硬盘巨磁电阻磁头的抛光可分为自由磨粒抛光和纳米研磨,在自由磨粒抛光中,精确控制载荷和金刚石磨粒的粒径,可以避免脆性去除实现延性去除。通过控制抛光过程中的抛光盘表面粗糙度、金刚石粒径大小及粒径分布和载荷等进行滚动磨粒和滑动磨粒比例的调控,获得较好的磁头表面质量和较高的材料去除率。在自由磨粒抛光阶段,先采用铅磨盘抛光,然后用锡磨盘抛光,以纳米研磨作为最后一道抛光工序对磁头表面进行研磨,获得了亚纳米级粗糙度的磁头表面。用两种工艺制作的纳米研磨盘进行加工,分别获得了0.37nm和0.8nm的磁头表面粗糙度,去除率分别为5.3 nm/min和3.9nm/min。  相似文献   

7.
蓝宝石衬底研磨加工中研磨盘材质的影响   总被引:2,自引:0,他引:2  
采用W14、W3.5的B4C磨粒对蓝宝石衬底进行粗研磨和精密研磨的试验研究.对比分析铸铁、合成铜和合成锡盘粗研磨蓝宝石衬底的表面粗糙度和研磨表面均匀性,试验结果表明,铸铁研磨盘获得的蓝宝石衬底宏观表面均匀性和平面度均优于合成铜盘和合成锡盘,经铸铁研磨盘加工后的蓝宝石衬底面型峰谷值误差小于5 μm、中心线平均表面粗糙度Ra<0.82 μm.精密研磨试验结果表明,采用合成铜盘和W3.5B4C磨粒有效地改善了蓝宝石衬底表面的均匀性,获得了Ra<20 nm、面型峰谷值误差小于1.6 μm的均匀表面,为蓝宝石的超精密研磨奠定了良好的基础.  相似文献   

8.
通过蓝宝石衬底的单面研磨试验研究,分析了W14和W3.5的B4C磨粒研磨后蓝宝石表面的微观形貌和宏观形貌,W14的B4C磨粒加工后蓝宝石表面微观裂纹密集且交错分布,体现了以滚轧和挤压为主的材料脆性去除作用,相同条件下,W3.5的B4C磨粒加工的蓝宝石表面划痕均匀,表面无微观裂纹,实现了以切削为主的材料延性去除形式。测试分析结果表明:磨粒粒径的选择对蓝宝石的研磨表面状态具有重要影响,其选择准则除考虑要达到的粗糙度等级之外,还必须同时考虑与研磨盘的嵌入作用及其对加工表面状态的影响;W3.5的B4C磨粒研磨加工后的蓝宝石表面宏观和微观均匀性良好,表面粗糙度、平面度等符合抛光前道工序的要求。  相似文献   

9.
This study presents the application of a new technique, magnetic field assisted finishing, for finishing of the inner surfaces of alumina ceramic components. The experiments performed on alumina ceramic tubes examine the effects of volume of lubricant, ferrous particle size, and abrasive grain size on the finishing characteristics. The finished surface is highly dependent on the volume of lubricant, which affects the abrasive contact against the surface; on the ferrous particle size, which changes the finishing force acting on the abrasive; and on the abrasive grain size, which controls the depth of cut. By altering these conditions, this process achieves surface finishes as fine as 0.02 μm in surface roughness (Ra) and imparts minimal additional residual stress to the surface. This study also reveals the mechanism to smooth the inner surface of alumina ceramic tube and to improve the form accuracy, i.e. the roundness of inside the alumina ceramic tube.  相似文献   

10.
Magnetic abrasive finishing (MAF) uses magnetic force of very low magnitude applied on ferromagnetic abrasive particles to obtain very high level surface finish. The process has been investigated extensively in the finishing of cylindrical surfaces. This paper reports an experimental work on the analysis of surface roughness and material removal using response surface method in the MAF of plane surfaces. The surface finish was found to improve significantly with an increase in the grain size, relative size of abrasive particles vis-à-vis the iron particles, feed rate and current. The optimum parameter levels which gave better surface finish and the higher material removal were also obtained from this experimentation.  相似文献   

11.
氮化硅陶瓷球研磨去除机制试验与仿真研究   总被引:1,自引:0,他引:1  
为研究研磨过程中氮化硅陶瓷球的材料去除形式及磨损行为,结合陶瓷材料动态压痕断裂力学理论,进行陶瓷球研磨加工试验,采用超景深三维显微镜和扫描电镜对研磨后陶瓷球表面进行观察,同时建立单颗金刚石磨粒冲击作用有限元模型并进行仿真研究。试验结果表明:氮化硅陶瓷球表面材料去除以脆性断裂去除和粉末化去除为主,陶瓷球表面残留有大量贝壳状缺陷和呈簇状随机分布的粉末化材料区域;研磨过程中,陶瓷球表面存在擦伤、划伤和凹坑等缺陷;磨粒冲击作用时,表面材料会受微切削作用产生破碎去除,同时也会受挤压作用产生脆性断裂去除,当磨粒以滚动方式作用在陶瓷球表面时,陶瓷球表面更容易形成粉末化去除,且材料去除率更高。仿真结果表明:各磨粒冲击作用方式产生的最大等效应力由大到小的顺序为滚动磨粒变切深、滚动磨粒定切深、磨粒挤压、滑动磨粒定切深,其中,滚动磨粒变切深产生的亚表面裂纹最深。  相似文献   

12.
Y. Xie  B. Bhushan 《Wear》1996,200(1-2):281-295
The objective of this research is to better understand the mechanisms of material removal in the free abrasive polishing process. Experiments were carried out to understand the effects of particle size, polishing pad and nominal contact pressure on the wear rate and surface roughness of the polished surface. A theoretical model was developed to predict the relationship between the polishing parameters and the wear rate for the case of hard abrasive particles sandwiched between a soft pad and a workpiece (softer than the abrasive particles). Experimental results and theoretical predictions indicate that the wear rate increases with an increase in particle size, hardness of polishing pad and nominal contact pressure, and with a decrease in elastic modulus of the polishing pad. Surface roughness increases with an increase in particle size and hardness of polishing pad, and nominal contact pressure has little effect on the roughness. A dimensionless parameter, wear index which combines all of the preceding parameters, was introduced to give a semi-quantitative prediction for the wear rate in free abrasive polishing. It is also suggested that when polishing hard material, in order to achieve a high materials removal rate and a smooth surface, it is preferable to use diamond as the polishing particles because of their high deformation resistance.  相似文献   

13.
A study on the radial-mode abrasive waterjet turning (AWJT) of 96 % alumina ceramic is presented and discussed. An experimental investigation is carried out to explore the influence of process parameters (including water pressure, jet feed speed, abrasive mass flow rate, surface speed, and nozzle tilted angle) on the material removal rate (MRR) when turning 96 % alumina ceramic. The experiments are conducted on the basis of response surface methodology (RSM) and sequential approach using face-centered central composite design. The quadratic model of RSM associated with the sequential approximation optimization (SAO) method is used to find optimum values of process parameters in terms of surface roughness and MRR. The results show that the MRR is influenced principally by the water pressure P and the next is abrasive mass flow rate m a . The optimization results show that the MRR can be improved without increasing the surface roughness when machining 96 % alumina ceramic in the radial-mode abrasive waterjet turning process.  相似文献   

14.
Chemical mechanical polishing (CMP) is a common method for realising the global planarisation and polishing of single-crystal SiC and other semiconductor substrates. The strong oxidant hydroxyl radicals (·OH) generated by the Fenton reaction can effectively oxidise and corrode the SiC substrate, and are thus used to improve the material removal rate (MRR) and surface roughness (Ra) after polishing of SiC during CMP. Therefore, it is necessary to study the material removal mechanism in detail. Based on the modified Preston equation, the effects of the CMP process parameters on the MRR and Ra after polishing of SiC and their relationship were studied, and a prediction model of the CMP process parameters, MRR, and Ra after polishing was also established based on a back-propagation neural network. The MRR initially increased and then decreased, and the Ra after polishing initially decreased and then increased, with increasing FeSO4 concentration, H2O2 concentration, and pH value. The MRR continuously increased with increasing abrasive particle size, abrasive concentration, polishing pressure, and polishing speed. However, the Ra continuously decreased with increasing abrasive particle size and abrasive concentration, increased with increasing polishing pressure, and initially decreased and then increased with increasing polishing speed. The established prediction model could accurately predict the relationship between the process parameters, MRR and Ra after polishing in CMP (relative prediction error of less than 10%), which could provide a theoretical basis for CMP of SiC.  相似文献   

15.
Abrasive slurry jet micro-machining (ASJM) was used to machine channels in glass, PMMA, zirconium tin titanate, and aluminum nitride. The channel roughness was measured as a function of the ASJM process parameters particle size, dose, impact velocity, and impact angle. The steady-state roughness of the channels was reached relatively quickly for typical ASJM abrasive flow rates. The roughness of channels having depth-to-width aspect ratios up to about 0.25 could be reduced by approximately 35% compared to the roughest channel by decreasing particle impact velocity and angle. However, machining at such conditions reduced the specific erosion rate by 64% on average. It was therefore quicker to post-blast reference channels (225 nm average root mean square (Rrms) roughness) using process parameters selected for peak removal. It was also found that the roughness of reference channels could be reduced by about 78% by post-blasting using 3 μm diameter silicon carbide particles at 15° jet incidence. The smoothest post-blasted channels had an Rrms roughness of about 23 nm in glass, PMMA, and zirconium tin titanate, and 170 nm in aluminum nitride. Computational fluid dynamics was used to predict the particle impact conditions that were used in a model to predict the steady-state roughness due to ductile erosion with an average error of 12%.  相似文献   

16.
No conclusive results have been proposed for the influence of the abrasive particle size on the material removal during the chemical mechanical polishing (CMP). In this paper, a mathematical model as a function of abrasive size and surface oxidizer concentration is presented for CMP. The model is proposed on the basis of the molecular-scale removal theory, probability statistics and micro contact mechanics. The influence in relation to the binding energy of the reacted molecules to the substrate is incorporated into the analysis so as to clarify the disputes on the variable experimental trends on particle size. The predicted results show that the removal rate increases sub-linearly with the abrasive particle size and oxidizer concentration. The model predictions are presented in graphical form and show good agreement with the published experimental data. Furthermore, variations of material removal rate with pressure, pad/wafer relative velocity, and wafer surface hardness, as well as pad characteristics are addressed. Results and analysis may lead further understanding of the microscopic material removal mechanism from molecular-scale perspective.  相似文献   

17.
Surface finish plays an important role in product quality due to its direct effects on product appearance. Hence, improvement of the surface finish is an essential requirement in industrial products. In an attempt to improve the surface finish of bulk metallic glass (BMG) material, several common methods have been used, such as milling, grinding, and lapping. However, the BMG surface finish has not yet been significantly improved by using these methods. Therefore, this paper proposes sequential abrasive jet polishing (AJP) and annealing processes that can considerably improve the BMG surface finish. In addition, this paper also takes into account optimal parameters for the AJP and annealing processes based on the Taguchi’s L 18 and L 8 orthogonal array experimental results, respectively. The experimental results show that using optimal AJP parameters, the surface roughness (R a) of the ground specimens can be significantly improved from 0.675 to 0.016 μm. After the AJP process, the surface roughness (R a) of the polished specimens can be further improved from 5.7 to 2 nm within an area of 5?×?5 μm by using optimal annealing parameters.  相似文献   

18.
针对传统半固结研磨盘由于盘面较软使得加工衬底面形精度难以保证的问题,提出一种蜂窝状结构的半固结磨料研磨盘的设计与制备方法。该研磨盘采用环氧树脂蜂窝结构作为支撑“骨架”,减小研磨盘的变形,以保证研磨衬底的面形精度,同时采用含有金刚石磨粒的凝胶体作为半固结研磨介质实现对衬底的研磨加工,获得了较好的衬底表面质量。基于该原理制备了一套新型研磨盘,并用于蓝宝石衬底的双面研磨加工。试验结果表明,研磨后衬底表面粗糙度较小,表面划痕和裂纹少,能够获得较好的表面质量;相应地,研磨后蓝宝石衬底的面形精度不仅没有变差,反而得到很大的改善,研磨后衬底的翘曲度、弯曲度和总厚度偏差均大幅减小。另外,研磨效率也相对较高,材料去除率可达0.3~0.4 μm/min。试验结果证明了该新型结构研磨盘不仅可以获得较好的表面质量和较高的研磨效率,同时还可提高衬底的面形精度,可用于面形精度要求较高的薄片衬底零件的精密研磨加工。  相似文献   

19.
Chemical mechanical polishing (CMP) has become a widely accepted global planarization technology. Abrasive is one of the key elements in CMP process. In order to enhance removal rate and improve surface quality of sapphire substrate, a series of novel La-doped colloidal SiO2 composite abrasives were prepared by seed-induced growth method. The CMP performance of the La-doped colloidal SiO2 composite abrasives on sapphire substrate were investigated using UNIPOL-1502 polishing equipment. The analyses on the surface of polished sapphire substrate indicate that slurries containing the La-doped colloidal SiO2 composite abrasives achieve lower surface roughness, higher material removal rate than that of pure colloidal SiO2 abrasive under the same testing conditions. Furthermore, the acting mechanism of the La-doped colloidal silica in sapphire CMP was investigated. X-ray photoelectron spectroscopy analysis shows that solid-state chemical reactions between La-doped colloidal SiO2 abrasive and sapphire surface occur during CMP process, which can promote the chemical effect in CMP and lead to the improvement of material removal rate.  相似文献   

20.
The surface roughness is a variable used to describe the quality of polished surface. This article presents a surface roughness model based on abrasive cutting and probability theory, which considers the effects of abrasive grain shape, grit and distribution feature, pressure on surface roughness. The abrasive grain protrusion heights are thought to close to Gaussian distribution, and then the relationship between the indentation depth and the pressure based on Hertz contact theory is obtained. Surface roughness prediction model is established by calculating indentation depth of the abrasive grains on workpiece surface. The maximum surface profile height (Ry) is approximately equal to the maximum indentation depth of the abrasive grain. The arithmetic average surface roughness (Ra) is equal to the average indentation depth of the abrasive grain. The effects of process parameters such as pressure and grit on Ry and Ra were simulated and analyzed in detail.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号