首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The effects of high-energy phosphate contents in muscles on glucose tolerance and glucose uptake into tissues were studied in rats and mice. Enhanced glucose tolerance associated with depleted high-energy phosphates and elevated glycogen content in muscles and liver was observed in animals fed creatine analogue beta-guanidinopropionic acid (beta-GPA). Distribution of infused 2-[1-14C]deoxy-D-glucose in tissues especially in the soleus muscle, kidney, and brain was greater in mice fed beta-GPA than controls. The glucose uptake was decreased when the contents of ATP and glycogen were normalized following creatine supplementation. Plasma insulin in animals at rest was lower and its concentration after intraperitoneal glucose infusion tended to be less in animals fed beta-GPA than controls (p > 0.05), although the pattern of insulin response to glucose loading was similar to the control. The daily voluntary activity in beta-GPA fed mice was also less than controls. These results suggest that improved glucose tolerance is not related to elevated insulin concentration and/or decreased glycogen following exercise. Such improvement may be due to an increased mitochondrial energy metabolism caused by depletion of high-energy phosphates.  相似文献   

2.
1. The direct effects of diazoxide on mitochondrial membrane potential, Ca2+ transport, oxygen consumption and ATP generation were investigated in mouse pancreatic B-cells and rat liver mitochondria. 2. Diazoxide, at concentrations commonly used to open adenosine 5'-triphosphate (ATP)-dependent K+-channels (K(ATP) channels) in pancreatic B-cells (100 to 1000 microM), decreased mitochondrial membrane potential in mouse intact perifused B-cells, as evidenced by an increase of rhodamine 123 fluorescence. This reversible decrease of membrane potential occurred at non-stimulating (5 mM) and stimulating (20 mM) glucose concentrations. 3. A decrease of mitochondrial membrane potential in perifused B-cells was also caused by pinacidil, but no effect could be seen with levcromakalim (500 microM each). 4. Measurements by a tetraphenylphosphonium-sensitive electrode of the membrane potential of rat isolated liver mitochondria confirmed that diazoxide decreased mitochondrial membrane potential by a direct action. Pretreatment with glibenclamide (2 microM) did not antagonize the effects of diazoxide. 5. In Fura 2-loaded B-cells perifused with the Ca2+ channel blocker, D 600, a moderate, reversible increase of intracellular Ca2+ concentration could be seen in response to 500 microM diazoxide. This intracellular Ca2+ mobilization may be due to mitochondrial Ca2+ release, since the reduction of membrane potential of isolated liver mitochondria by diazoxide was accompanied by an accelerated release of Ca2+ stored in the mitochondria. 6. In the presence of 500 microM diazoxide, ATP content of pancreatic islets incubated in 20 mM glucose for 30 min was significantly decreased by 29%. However, insulin secretion from mouse perifused islets induced by 40 mM K+ in the presence of 10 mM glucose was not inhibited by 500 microM diazoxide, suggesting that the energy-dependent processes of insulin secretion distal to Ca2+ influx were not affected by diazoxide at this concentration. 7. The effects of diazoxide on oxygen consumption and ATP production of liver mitochondria varied depending on the respiratory substrates (5 mM succinate, 10 mM alpha-ketoisocaproic acid, 2 mM tetramethyl phenylenediamine plus 5 mM ascorbic acid), indicating an inhibition of respiratory chain complex II. Pinacidil, but not levcromakalim, inhibited alpha-ketoisocaproic acid-fuelled ATP production. 8. In conclusion, diazoxide directly affects mitochondrial energy metabolism, which may be of relevance for stimulus-secretion coupling in pancreatic B-cells.  相似文献   

3.
Mutations in the tRNA genes of mitochondrial DNA (mtDNA) cause the debilitating MELAS (mitochondrial, myopathy, encephalopathy, lactic acidosis and stroke-like episodes) and MERRF (myoclonic epilepsy and ragged-red fibres) syndromes. These mtDNA mutations affect respiratory chain function, apparently without decreasing cellular ATP concentration [Moudy et al. (1995) PNAS, 92, 729-733]. To address this issue, we investigated the role of mitochondrial ATP synthesis in fibroblasts from MELAS and MERRF patients. The maximum rate of mitochondrial ATP synthesis was decreased by 60-88%, as a consequence of the decrease in the proton electrochemical potential gradient of MELAS and MERRF mitochondria. However, in quiescent fibroblasts neither ATP concentration or the ATP/ADP ratio was affected by the lowered rate of ATP synthesis. We hypothesized that the low ATP demand of quiescent fibroblasts masked the mitochondrial ATP synthesis defect and that this defect might become apparent during higher ATP use. To test this we simulated high energy demand by titrating cells with gramicidin, an ionophore that stimulates ATP hydrolysis by the plasma membrane Na+/K+-ATPase. We found a threshold gramicidin concentration in control cells at which both the ATP/ADP ratio and the plasma membrane potential decreased dramatically, due to ATP demand by the Na+/K+-ATPase outstripping mitochondrial ATP synthesis. In MELAS and MERRF fibroblasts the corresponding threshold concentrations of gramicidin were 2-20-fold lower than those for control cells. This is the first demonstration that cells containing mtDNA mutations are particularly sensitive to increased ATP demand and this has several implications for how mitochondrial dysfunction contributes to disease pathophysiology. In particular, the increased susceptibility to plasma membrane depolarization will render neurons with dysfunctional mitochondria susceptible to excitotoxic cell death.  相似文献   

4.
Periodate-oxidized ADP (oADP)2 and periodate-oxidized ATP (oATP) stimulate the permeability transition in energized rat liver mitochondria measured as the Ca2+-efflux induced by Ca2+ and Pi. In the presence of Mg2+ and Pi, mitochondria lose intramitochondrial adenine nucleotides at a slow rate. oATP induces a strong decrease of the matrix adenine nucleotides which is inhibited by carboxyatractyloside. Under these conditions, Mg2+ prevents the opening of the permeability transition pore. EGTA prevents the Pi-induced slow efflux of adenine nucleotides, but is without effect on the oATP-induced strong decrease of adenine nucleotides. This oATP-induced strong adenine nucleotide efflux is inhibited by ADP. oATP reduces the increase of matrix adenine nucleotides occurring when the mitochondria are incubated with Mg2+ and ATP. This effect of oATP is also prevented by carboxyatractyloside. oATP is not taken up by the mitochondria. It is suggested that oATP induces a strong efflux of matrix adenine nucleotides by the interaction with the ADP/ATP carrier from the cytosolic side. The induction of the mitochondrial permeability transition by oADP and oATP is attributed to two mechanisms-a strong decrease in the intramitochondrial adenine nucleotide content, especially that of ADP, and a stabilization of the c-conformation of the ADP/ATP carrier.  相似文献   

5.
This study investigated the recovery of pancreatic insulin content during human islet isolation prior to and after digestion-filtration, continuous Hanks-Ficoll gradient purification (n = 20), and 3-4 day culture at 22 degrees C (n = 6). The native insulin content varied in a wide range from 28.4 U to 360.8 U/pancreas. After digestion the initially measured average insulin content of 115.8 +/- 20.8 U/pancreas (mean +/- SEM) increased to 264.6 +/- 22.8% (p < 0.001). This increase of insulin during pancreas digestion was attributed to the asymetrical distribution of insulin within the pancreas. Sampling of insulin within the pancreatic caput seemed not to be representative for the insulin content of the complete native organ, because the ratio of insulin per gram tissue within the pancreatic cauda compared to the caput (n = 5) was 2.4 +/- 0.4 (p < 0.05). After purification total insulin recovery was 55.3 +/- 4.8% (p < 0.001). Because recovery of islet equivalent number (IEQ) (83.7 +/- 4.4%) exceeded insulin recovery, insulin/IEQ ratio decreased from 656.8 +/- 70.6 microU/IEQ before purification to 436.4 +/- 58.1 microU/IEQ (p < 0.001) after purification. After 22 degrees C culture (n = 6) recovery of insulin and IEQ was 80.1 +/- 8.1% (p < 0.05) and 92.8 +/- 3.5% (p = NS), respectively. Insulin content per IEQ decreased to 85.8 +/- 6.5% (p < 0.05). This study clearly shows that most of islet insulin is lost during purification. This seems to be caused rather by an amplified insulin release than by the loss of islets itself. This release may facilitate the separation of endocrine and exocrine tissue by gradient centrifugation, but may also accelerate islet exhaustion detrimental for long-term insulin independence.  相似文献   

6.
1. To examine metabolic correlates of insulin resistance in skeletal muscle, we used 31P magnetic resonance spectroscopy to study glycogenolytic and oxidative ATP synthesis in leg muscle of lean and obese Zucker rats in vivo during 6 min sciatic nerve stimulation at 2 Hz. 2. The water content of resting muscle was reduced by 21 +/- 7% in obese (insulin-resistant) animals compared with lean animals, whereas the lipid content was increased by 140 +/- 70%. These results suggest that intracellular water content was reduced by 17% in obese animals. 3. During exercise, although twitch tensions were not significantly different in the two groups, rates of total ATP synthesis (expressed per litre of intracellular water) were 48 +/- 20% higher in obese animals, suggesting a 50 +/- 8% reduction in intrinsic "metabolic efficiency'. Changes in phosphocreatine and ADP concentration were significantly greater in obese animals than in lean animals, whereas changes in intracellular pH did not differ. 4. These results imply that oxidative ATP synthesis during exercise is activated earlier in obese animals than in lean animals. This difference was not fully accounted for by the greater increase in the concentration of the mitochondrial activating signal ADP. Neither the post-exercise recovery kinetics of phosphocreatine nor the muscle content of the mitochondrial marker enzyme citrate synthase was significantly different in the two groups. The increased oxidative ATP synthesis in exercise must therefore be due to altered kinetics of mitochondrial activation by signals other than ADP. 5. Thus, the insulin-resistant muscle of obese animals may compensate for its decreased efficiency (and consequent increased need for ATP) by increased reliance on oxidative ATP synthesis.  相似文献   

7.
The purpose of this work was to investigate the mechanism of regulation of mitochondrial respiration in vivo in different muscles of normal rat and mice, and in transgenic mice deficient in desmin. Skinned fiber technique was used to study the mitochondrial respiration in the cells in vivo in the heart, soleus and white gastrocnemius skeletal muscles of these animals. Also, cardiomyocytes were isolated from the normal rat heart, permeabilized by saponin and the "ghost" (phantom) cardiomyocytes were produced by extraction of myosin with 800 mM KCl. Use of confocal immunofluorescent microscopy and anti-desmin antibodies showed good preservation of mitochondria and cytoskeletal system in these phantom cells. Kinetics of respiration regulation by ADP was also studied in these cells in detail before and after binding of anti-desmine antibodies with intermediate filaments. In skinned cardiac or soleus skeletal muscle fibers but not in fibers from fast twitch skeletal muscle the kinetics of mitochondrial respiration regulation by ADP was characterized by very high apparent Km (low affinity) equal to 300-400 microM, exceeding that for isolated mitochondria by factor of 25. In skinned fibers from m. soleus, partial inhibition of respiration by NaN3 did not decrease the apparent Km for ADP significantly, this excluding the possible explanation of low apparent affinity of mitochondria to ADP in these cells by its rapid consumption due to high oxidative activity and by intracellular diffusion problems. However, short treatment of fibers with trypsin decreased this constant value to 40-70 microM, confirming the earlier proposition that mitochondrial sensitivity to ADP in vivo is controlled by some cytoplasmic protein. Phantom cardiomyocytes which contain mostly mitochondria and cytoskeleton and retain the normal shape, showed also high apparent Km values for ADP. Therefore, they are probably the most suitable system for studies of cellular factors which control mitochondrial function in the cells in vivo. In these phantom cells anti-desmin antibodies did not change the kinetics of respiration regulation by ADP. However, in skinned fibers from the heart and m. soleus of transgenic desmin-deficient mice some changes in kinetics of respiration regulation by ADP were observed: in these fibers two populations of mitochondria were observed, one with usually high apparent Km for ADP and the second one with very low apparent Km for ADP. Morphological observations by electron microscopy confirmed the existence of two distinct cellular populations in the muscle cells of desmin-deficient mice. The results conform to the conclusion that the reason for observed high apparent Km for ADP in regulation of oxidative phosphorylation in heart and slow twitch skeletal muscle cells in vivo is low permeability of mitochondrial outer membrane porins but not diffusion problems of ADP into and inside the cells. Most probably, in these cells there is a protein associated with cytoskeleton, which controls the permeability of the outer mitochondrial porin pores (VDAC) for ADP. Desmin itself does not display this type of control of mitochondrial porin pores, but its absence results in appearance of cells with disorganised structure and of altered mitochondrial population probably lacking this unknown VDAC controlling protein. Thus, there may be functional connection between mitochondria, cellular structural organisation and cytoskeleton in the cells in vivo due to the existence of still unidentified protein factor(s).  相似文献   

8.
The magnitude and space-temporal profile of the intracellular Ca2+ transients are determined both by the mechanism that decrease and increase calcium levels in the cytoplasm. By the use of cocktails with different content of specific inhibitors of the extrusion and sequester mechanisms, the ability of mitochondrial Ca2+ transport to limit the elevation in free cytosolic Ca2+ concentration, following an imposed Ca2+ load was reexamined, indicating variable data with respect to various cells. In chromaffin cells, inhibition of mitochondrial Ca2+ accumulation with protonophore, dramatically modifies the shape of the [Ca2+]c response, indicating that mitochondrial Ca2+ uptake is an important mechanism for clearance of large Ca2+ loads. By contrast, using digital imaging in the presence of specific mitochondria inhibitors to investigate the [Ca2+]c responses of cerebellar granule cells in which ATP generation has been totally separated from mitochondrial Ca2+ transport, indicates surprising results: it was confirmed that mitochondria in these cells accumulate Ca2+ entering the cell in response to plasma membrane depolarization, but specific abolition of mitochondrial Ca2+ accumulation without ATP depletion significantly decreases the bulk cytoplasmic Ca2+ transients generated by elevated KCl levels, whereas the response in greatly increased when protonophore are present and ATP/ADP ratios are allowed to collapse. The results suggest that nonmitochondrial ATP-dependent transport pathways are primarily responsible for removing excess Ca2+ from the cytoplasm. Far from restricting the elevation in [Ca2+]c in response to a Ca2+ load, functional mitochondria may enhance the elevation in the bulk cytoplasm. The existent conflict of data, suggests the need for a new reevaluation of the role of mitochondria in Ca2+ clearance, and the possibility that mitochondria contribute to, rather than protect against, excitoxicity has to be investigated.  相似文献   

9.
The short term cardiac side-effects of AZT (3'-azido-3'-deoxythymidine, zidovudine) was studied in rats to understand the biochemical events contributing to the development of AZT-induced cardiomyopathy. Developing rats were treated with AZT (50 mg/kg/day) for 2 wk and the structural and functional changes were monitored in the cardiac muscle. AZT treatment provoked a surprisingly fast appearance of cardiac malfunctions in developing animals characterized by prolonged RR, PR and QT intervals and J point depression. Electron microscopy showed abnormal mitochondrial structure but the cardiomyocyte had normal myofibers. The AZT treatment of rats significantly increased ROS and peroxynitrite formation in heart tissues as determined by the oxidation of nonfluorescent dihydrorhodamine123 and dichlorodihydro-fluorescein diacetate (H2DCFDA) to fluorescent dyes, and induced single-strand DNA breaks. Lipid peroxidation and oxidation of cellular proteins determined from protein carbonyl content were increased as a consequence of AZT treatment. Activation of the nuclear poly-ADP-ribose polymerase and the accelerated NAD+ catabolism were also observed in AZT-treated animals. Western blot analysis showed that mono-ADP-ribosylation of glucose regulated protein (GRP78/BIP) was enhanced by AZT treatment, that process inactivates GRP78. In this way moderate decrease in the activity of respiratory complexes was detected in the heart of AZT-treated animals indicating a damaged mitochondrial energy production. There was a significant decrease in creatine phosphate concentration resulting in a decrease in creatine phosphate/creatine ratio from 2.08 to 0.58. ATP level remained close to normal but the total extractable ADP increased with 45%. The calculated free ATP/ADP ratio decreased from 340 to 94 in the heart of AZT-treated rats as a consequence of increased free ADP concentration. It was assumed that the increased free ADP in AZT-treated cardiomyocyte may help cells to compensate the defective ATP production in damaged mitochondria by activating the ATP synthesis in undamaged mitochondria. Southern blot analysis did not show decreased quantity of mtDNA deriving from AZT-treated rat hearts indicating that under our experimental conditions AZT-induced heart abnormalities are not the direct consequence of the mtDNA depletion. These data show that ROS-mediated oxidative damages, activated ADP-ribosylation reactions and accelerated NAD+ catabolism play basic roles in the development of AZT-induced cardiomyopathy in our animal model and indicated that these ROS-mediated processes can be important factors in the development of myopathy and cardiomyopathy in zidovudine-treated AIDS patients.  相似文献   

10.
Although usually steady-state fluxes and metabolite levels are assessed for the study of metabolic regulation, much can be learned from studying the transient response during quick changes of an input to the system. To this end we study the transient response of O2 consumption in the heart during steps in heart rate. The time course is characterized by the mean response time of O2 consumption which is the first statistical moment of the impulse response function of the system (for mono-exponential responses equal to the time constant). The time course of O2 uptake during quick changes is measured with O2 electrodes in the arterial perfusate and venous effluent of the heart, but the venous signal is delayed with respect to O2 consumption in the mitochondria due to O2 diffusion and vascular transport. We correct for this transport delay by using the mass balance of O2, with all terms (e.g. O2 consumption and vascular O2 transport) taken as function of time. Integration of this mass balance over the duration of the response yields a relation between the mean transit time for O2 and changes in cardiac O2 content. Experimental data on the response times of venous [O2] during step changes in arterial [O2] or in perfusion flow are used to calculate the transport time between mitochondria and the venous O2 electrode. By subtracting the transport time from the response time measured in the venous outflow the mean response time of mitochondrial O2 consumption (tmito) to the step in heart rate is obtained. In isolated rabbit heart we found that tmito to heart rate steps is 4-12 s at 37 degrees C. This means that oxidative phosphorylation responds to changing ATP hydrolysis with some delay, so that the phosphocreatine levels in the heart must be decreased, at least in the early stages after an increase in cardiac ATP hydrolysis. Changes in ADP and inorganic phosphate (Pi) thus play a role in regulating the dynamic adaptation of oxidative phosphorylation, although most steady state NMR measurements in the heart had suggested that ADP and Pi do not change. Indeed, we found with 31P-NMR spectroscopy that phosphocreatine (PCr) and Pi change in the first seconds after a quick change in ATP hydrolysis, but remarkably they do this significantly faster (time constant approximately 2.5 s) than mitochondrial O2 consumption (time constant 12 s). Although it is quite likely that other factors besides ADP and Pi regulate cardiac oxidative phosphorylation, a fascinating alternative explanation is that the first changes in PCr measured with NMR spectroscopy took exclusively place in or near the myofibrils, and that a metabolic wave must then travel with some delay to the mitochondria to stimulate oxidative phosphorylation. The tmito slows with falling temperature, intracellular acidosis, and sometimes also during reperfusion following ischemia and with decreased mitochondrial aerobic capacity. In conclusion, the study of the dynamic adaptation of cardiac oxidative phosphorylation to demand using the mean response time of cardiac mitochondrial O2 consumption is a very valuable tool to investigate the regulation of cardiac mitochondrial energy metabolism in health and disease.  相似文献   

11.
Human placental mitochondria prepared by a new isolation procedure exhibit low but well coupled rates of state 3 respiration with different substrates (succinate: 32.3 nmol O2/mg/min, RCI = 4.4; pyruvate: 12.6 nmol O2/mg/min, RCI R = 4.2; palmitoylcarnitine: 16.6 nmol O2/mg/min, RCI R = 4.9). The addition of the uncoupler FCCP increased the respiratory rates (succinate: 40.7 nmol O2/mg/min; pyruvate: 21.2 nmol O2/mg/min: palmitoylcarnitine: 25.4 nmol O2/mg/min). The low respiratory rates correlate well with a low capacity of the respiratory chain as shown by the specific contents of cytochrome c (0.15 nmol/mg), cytochrome b (0.19 nmol/mg) and cytochrome oxidase (0.14 nmol/mg) as well as with the low content of adenine nucleotides (2.71 nmol/mg). These data together with the finding of high activities of alkaline phosphatase (2.2 U/mg) support the view that human placental mitochondria are contaminated with nonmitochondrial membranes. Since it was not possible to obtain functionally intact mitochondria with negligible activities of alkaline phosphatase the influence of this enzyme on the extramitochondrial adenine nucleotide turnover was investigated. Alkaline phosphatase splits phosphate from ATP, ADP and AMP with different rates resulting in an intermediate accumulation of AMP. Mitochondrial adenylate kinase (0.16 U/mg) regenerated ADP from AMP and ATP resulting in drastically decreased ADP/O ratios and prolonged state 3 respirations. Inhibiting the adenylate kinase with diadenosine pentaphosphate the ADP regeneration from AMP and ATP was suppressed which, in turn, enhanced the ADP/O ratios. In the absence of magnesium ions, if both the alkaline phosphatase and the adenylate kinase are inhibited normal ADP/O ratios and state 3-state 4 transitions can be observed. Under these conditions, human placental mitochondria showed normal properties comparable to those of mitochondria from other tissues with the only exception of low specific activities.  相似文献   

12.
The aim of this study was to investigate the oxidative phosphorylation and additional adenosinetriphosphate (ATP) production mechanisms in mitochondria isolated from hypertrophied left ventricles of spontaneously hypertensive rats (SHR). Measurements of adenosinediphosphate (ADP)/ ATP and inorganic phosphate (Pi) carrier activities showed a significant reduction of Vmax values thus suggesting a general decrease of ATP supply in the hypertrophied ventricles. Investigation of mitochondrial enzyme activities showed 45% and 90% increases of adenylate-kinase and 80% and 110% increases of creatine-phosphokinase in 5- and 24-week-old SHR, before and after the development of the hypertensive state, respectively. The abnormalities found in SHR at the mitochondrial level suggest a profound rearrangement of energy production mechanisms in this model of left ventricular hypertrophy; whether the defects are determined genetically, and then worsen with the hypertensive state, remains to be determined.  相似文献   

13.
Reduction of mitochondrial membrane potential (Psim) and release of cytochrome c from mitochondria appear to be key events during apoptosis. Apoptosis was induced in IC.DP premast cells by the withdrawal of interleukin-3 (IL-3). Psim decreased by 12 hours and cytochrome c was detected in the cytosol at 18 hours. Despite these changes in the mitochondria after 18 hours of IL-3 deprivation, clonogenicity was unaffected when IL-3 was replenished at 18 hours. Activation of v-Abl tyrosine kinase (v-Abl TK) in IC.DP cells before IL-3 depletion led to increased levels of Bcl-XL, prevented reduction of Psim and the release of mitochondrial cytochrome c, and suppressed apoptosis. Activation of v-Abl TK 18 hours after withdrawal of IL-3 when 相似文献   

14.
Ethanol intake depletes the mitochondrial pool of reduced glutathione (GSH) by impairing the transport of GSH from cytosol into mitochondria. S-Adenosyl-L-methionine (SAM) supplementation of ethanol-fed rats restores the mitochondrial pool of GSH. The purpose of the current study was to determine the effect of ethanol feeding on the kinetic parameters of mitochondrial GSH transport, the fluidity of mitochondria, and the effect of SAM on these changes. Male Sprague-Dawley rats were fed ethanol-liquid diet for 4 weeks supplemented with either SAM or N-acetylcysteine (NAC). SAM-supplementation of ethanol-fed rats restored the mitochondrial GSH pool but NAC administration did not. Kinetic studies of GSH transport in isolated mitochondria revealed two saturable, adenosine triphosphate (ATP)-stimulated components that were affected significantly by chronic ethanol feeding: lowering Vmax (0.22 and 1.6 in ethanol case vs. 0.44 and 2.7 nmol/15 sec/mg protein in controls) for both low and high affinity components with the latter showing an increased Km (15.5 vs. 8.9, mmol/L in ethanol vs. control). Mitochondria from SAM-supplemented ethanol-fed rats showed kinetic features of GSH transport similar to control mitochondria. Determination of membrane fluidity revealed an increased order parameter in ethanol compared with control mitochondria, which was restricted to the polar head groups of the bilayer and was prevented by SAM but not NAC supplementation of ethanol-fed rats. The changes elicited in mitochondria by ethanol were confined to the inner membrane; mitoplasts from ethanol-fed rats showed features similar to those of intact mitochondria such as impaired transport of GSH and increased order parameter. A different mitochondrial transporter, adenosine diphosphate (ADP)/ATP translocator, was unaffected by ethanol feeding. Furthermore, fluidization of mitochondria or mitoplasts from ethanol-fed rats by treatment with a fatty acid derivative restored their ability to transport GSH to control levels. Thus, ethanol-induced impaired transport of GSH into mitochondria is selective, mediated by decreased fluidity of the mitochondrial inner membrane, and prevented by SAM treatment.  相似文献   

15.
Our previous studies in iron-loaded rat heart cells showed that in vitro iron loading results in peroxidative injury, manifested in a marked decrease in rate and amplitude of heart cell contractility and rhythmicity, which is correctable by treatment with deferoxamine (DF). In the present studies we explored the role of mitochondrial damage in myocardial iron toxicity. Iron loading by 24-hour incubation with 0.36 mmol/L ferric ammonium citrate resulted in a decrease in the activity of nicotinamide adenine dinucleotide (NADH)-cytochrome c oxidoreductase (complex I+III) to 35.3%+/-11.2% of the value in untreated controls; of succinate-cytochrome c oxidoreductase (complex II+III) to 57.4%+/-3.1%; and of succinate dehydrogenase to 63.5%+/-12.6% (p < 0.001 in all cases). The decrease in activity of other mitochondrial enzymes, including NADH-ferricyanide reductase, succinate ubiquinone oxidoreductase (complex II), cytochrome c oxidase (complex IV), and ubiquinol cytochrome c oxidoreductase (complex III), was less impressive and ranged from 71.5%+/-15.8% to 91.5%+/-14.6% of controls. That the observed loss of respiratory enzyme activity was a specific effect of iron toxicity was clearly demonstrated by the complete restoration of enzyme activities by in vitro iron chelation therapy. Sequential treatment with iron and doxorubicin caused a loss of complex I+III and complex II+III activity that was greater than that seen with either agent alone but was only partially correctable by DF treatment. Alterations in cellular adenosine triphosphate measurements paralleled very closely the changes observed in respiratory complex activity. These findings demonstrate for the first time the impairment of cardiac mitochondrial respiratory enzyme activity caused by iron loading at conditions formerly shown to produce severe abnormalities in contractility and rhythmicity.  相似文献   

16.
Previous work suggested a deficiency in the terminal complex of the mitochondrial electron transport chain, cytochrome c oxidase (COX), in platelet mitochondria of Alzheimer's disease (AD) patients. The present study extends this observation to AD brain mitochondria through assay of electron transport chain activities in mitochondria isolated from autopsied brain samples from AD patients (n = 9) and from controls with and without known neurologic disease (n = 8). AD brain mitochondria demonstrated a generalized depression of activity of all electron transport chain complexes. This depression was most marked in COX activity (p < 0.001). Concentrations of cytochromes b, c1, and aa3 were similar in AD and controls. The electron transport chain is defective in AD brain, and the defect centers about COX.  相似文献   

17.
We have proposed that the binding of ATP at a site of substantial affinity and specificity could regulate the activity of cytochrome c with its physiological partners and thus the overall efficiency of mitochondrial electron transport. We now describe the use of ATP affinity-labeled protein to test the effect of occupancy of that site, which includes the invariant arginine 91, on the activity of cytochrome c with purified cytochrome c reductase and oxidase and its association with the mitochondrial inner membrane. Electron-transfer activities with the reductase and oxidase were inhibited by site occupancy to 41% and 11-15% of native values, respectively. The marked difference in the degree of inhibition of activity that distinguishes the reactions with the two major physiological partners was sufficient to cause, in whole mitochondria, a demonstrable shift from a situation in which there is a rate-limiting transfer from the reductase to cytochrome c, to a state where rates are more evenly matched for transfers between cytochrome c and the two redox partners. Site occupancy also substantially reduces the ionic strength necessary for half-maximal dissociation of cytochrome c from the membrane. These data imply that the decreased efficiency of electron transfer caused by ATP attachment can be attributed to a decrease in the protein's activity with individual physiological partners, possibly compounded with a decrease in its affinity for the inner mitochondrial membrane, and suggest that feedback regulation by ATP of cellular respiration operates in like manner.  相似文献   

18.
Our aim was to carefully analyse the time-dependent changes that affect the mitochondrial function of myocardial cells during and after an ischemic episode. To this end, variables characterizing mitochondrial function have been evaluated on myocardial samples from isolated rat hearts subjected to different conditions of ischemia. The technique of permeabilized fibers was used in order to evaluate the mitochondrial function whilst retaining intracellular structure. The earliest alteration that could be detected was a decrease in the stimulatory effect of creatine on mitochondrial respiration. This alteration became more pronounced as the severity (or duration) of the ischemia increased. Afterwards, a significant decrease in the apparent Km of mitochondrial respiration for ADP also appeared, followed by a diminution of the maximal respiration rate which was partly restored by adding cytochrome c. Finally, for the most severe conditions of ischemia, the basal respiratory rate also increased. These observations are indicative of a sequence of alterations affecting first the intermembrane space, then the outer mitochondrial membrane, and finally the inner membrane. The discussion is focused on the very early alterations, that could not be detected using the conventional techniques of isolated mitochondria. We postulate that these alterations to the intermembrane space and outer mitochondrial membrane can induce disturbances both in the channelling of energy from the mitochondria, and on the signalling towards the mitochondria. The potential consequences on the regulation of the production of energy (ATP, PC) by the mitochondria are evoked.  相似文献   

19.
BACKGROUND: Volatile anesthetics are known to have varying effects on hepatic oxygen supply in vivo and have been shown to depress hepatic mitochondrial respiration and so energy charge in vitro. However, the effect of halothane, isoflurane and enflurane on hepatic adenine nucleotide status in vivo has not been evaluated. METHODS: Ninety male rats were exposed to 40% oxygen (n = 22) or 40% oxygen in equipotent (1 MAC) concentrations of halothane (1%) (n = 23), isoflurane (1.4%) (n = 22) or enflurane (2%) (n = 23) for 2 hours. All animals were then administered intraperitoneal pentobarbital and anesthesia continued and laparotomy was performed. A liver biopsy was taken for determination of hepatocellular adenosine-5-triphosphate (ATP), adenosine-5-diphosphate (ADP) and adenosine-5-monophosphate (AMP) and computation of energy charge (EC) from ?(ATP + 1/2ADP)+(ATP + ADP + AMP)? and total adenine nucleotides (TAN) from (ATP + ADP + AMP). After the biopsy the aorta was cannulated for blood sampling. RESULTS: Rats in each group were similar in weight, as well as acid base and blood gas status just after liver biopsy. Hepatic energy charge, ATP, ADP, AMP, and TAN levels were not different in animals receiving either halothane, isoflurane or enflurane when compared with those receiving only oxygen. CONCLUSION: One MAC of anesthesia for a period of 2 hours with the described volatile anesthetic agents did not affect adenine nucleotide status in vivo in rats.  相似文献   

20.
Oxidation of added NADH by rat liver mitochondria has been studied. It is found that exogenous NADH, when oxidized by rat liver mitochondria in sucrose hypotonic medium supplemented with Mg2+ and EGTA, generates a membrane potential (delta psi) even in the absence of added cytochrome c. ADP and phosphate decrease delta psi, the effect being reversed by oligomycin. Rotenone and myxothiazol do not inhibit delta psi generated by oxidation of exogenous NADH. Added cytochrome c increases the rate of the exogenous NADH oxidation and coupled delta psi formation. In sucrose isotonic medium, or in hypotonic medium without Mg2+, exogenous NADH fails to stimulate respiration and to form a membrane potential. In the presence of Mg2+, exogenous NADH appears to be effective in delta psi generation in isotonic sucrose medium if mitochondria were treated with digitonin. In isotonic KCl without Mg2+, oxidation of exogenous NADH is coupled to the delta psi formation and MgCl2 addition before mitochondria prevents this effect. In hypotonic (but not in isotonic) sucrose medium, Mg2+ makes a portion of the cytochrome c pool reducible by exogenous NADH or ascorbate. It is assumed that (i) hypotonic treatment or digitonin causes disruption of the outer mitochondrial membrane, and, as a consequence, desorption of the membrane-bound cytochrome c in a Mg2+-dependent fashion; (ii) incubation in isotonic KCI without Mg2+ results in swelling of mitochondrial matrix, disruption of the outer membrane and cytochrome c desorption whereas Mg2+ lowers the K+ permeability of the inner membrane and, hence, prevents swelling; (iii) desorbed cytochrome c is reduced by added NADH via NADH-cytochrome b5 reductase and cytochrome b5 or by ascorbate and is oxidized by cytochrome oxidase. The role of desorbed cytochrome c in oxidation of superoxide and cytoplasmic NADH as well as possible relations of these events to apoptosis are discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号