首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
采用机械合金化的方法制备了FeSiAl合金粉末样品。以硅钢粉和铝粉为原料,按摩尔分数Fe3Si0.4Al0.6配比,研究其机械合金化过程,并对机械合金化的机制进行探讨。用激光粒度仪、X射线衍射(XRD)和扫描电子显微镜分析材料的粒度、形貌和结构。研究表明,Fe3Si0.4Al0.6混合粉末球磨30h后,粉末粒径可达18μm;Fe3Si0.4Al0.6混合粉末经高能球磨20h后,形成具有bcc结构的α固溶体;球磨继续进行,合金化的粉末和晶粒不断细化。  相似文献   

2.
为制备SiC质点弥散分布的Ti-48Al-2Cr-2Nb超细复合粉末,对复合粉末的机械合金工艺进行了较详尽的研究。用XRD和SEM研究了机械合金化过程中粉末形貌,粒度和显微组织的变化,并对复合粉末的机械化机过程进行了探讨。  相似文献   

3.
Mechanical alloying is a powder processing technique used to process materials farther from equilibrium state. This technique is mainly used to process difficult to alloy materials in which the solid solubility is limited, and to process materials where non-equilibrium phases cannot be produced at room temperature through conventional processing techniques. In the present work, mechanical alloying/milling of selected compositions in the Al-Cu binary alloy system was carried out at a ball-to-powder weight ratio (BPR) of 2 : 1, to investigate alloying and subsequent heat treatment on microstructural changes as a result of short milling times. Copper-aluminum powder mixtures containing 5, 20, and 40 wt% Al (11, 37, and 61 at% Al, respectively) were subjected to mechanical alloying, and characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), and differential scanning calorimetry (DSC), after mechanical alloying and subsequent heat treatment. Nanometer-sized grains were observed in the as-milled crystalline powders in all compositions. Crystallite sizes were calculated using the Scherrer formula and found to be in the order of 10-20 nm after 360 minutes of milling time for all compositions. The XRD data show considerable solid solubility extension in these powders, and formation of intermetallic phases due to mechanical alloying and subsequent annealing. These changes are discussed in the context of the Al-Cu phase diagram.  相似文献   

4.
Electrostatic powder deposition using corona charging is widely used in a plethora of industrial applications. Disadvantages of this technique are back corona onset and the Faraday penetration limitation. Another method to charge powders is to use tribochargers. Tribocharging depends upon the work function difference between the contacting materials and generates bipolarly charged particles. In this study, acrylic and epoxy powders were fluidized and charged by passing through stainless steel, copper, aluminum, and polycarbonate static mixers, respectively. The particle velocity and powder flow rate were varied to determine their effect on the net charge-to-mass ratio (Q/M) acquired by the powders. The Q/M increased rapidly with velocities between 1.5 to 2.5 m/s and stabilized for higher velocities but decreased with increasing powder flow rate at a constant velocity. The net positive or negative charge on each powder was determined to be dependant on the charger material. The use of an aluminum charger (net negative charge) in combination with a PTFE finger nozzle (net positive charge) resulted in a net powder Q/M of - 0.05 μC/g. The generation of an ion-free powder cloud with high bipolar charge but overall charge density of almost zero is anticipated to provide a better coverage of recessed areas.  相似文献   

5.
In the present study, the effect of the nanosized SiC particles loading and Mg addition on the characteristics of Al/SiC composite powders produced via a relatively new method called “in situ powder metallurgy” (IPM) was investigated. Specified amounts of SiC particles (within a size range of 250 to 600 µm) together with SiC nanoparticles (average size of 60 nm) were preheated and added to aluminum melt. This mixture was stirred via an impeller at a certain temperature for a predetermined time. The liquid droplets created by this process were then subsequently cooled in air and screened through 250 µm sieve to separate micron-sized SiC particles from solidified aluminium powder particles containing nanosized SiC particles. Results of SEM and TEM studies together with microhardness measurements revealed that the commercially pure (CP) Al could not embed as-received SiC particles. However, the nanosized particles were distributed uniformly in the Al-1 wt% Mg powders. The process yield and microhardness of the Al-1Mg composite powders increased with increasing the contributed amount of nanosized SiC particles.  相似文献   

6.
The effect of copper addition on powder processed Al-10 vol% SiC composites was studied in regards to their sintering responses. Copper was mixed with aluminum powder either as elemental powders or as the coated layer on SiC particles. After sintering at 600°C for 1 h, Al-SiC composites with no copper addition showed little densification. It also demonstrated very low bend strengths of 49 and 60 MPa, indicating poor bonding between the powders in the sintered composite. The addition of 8% copper to the Al/SiC system effectively improved the sintering response, producing over 95% theoretical density, a bend strength of 231 MPa with the copper coated SiC, and a 90% density with over 200 MPa bend strength with the admixed copper.The as-sintered microstructures of the Al–SiC composites clearly revealed particle boundaries and sharp pores, indicating that only a limited neck growth occurred during sintering. In the case of Al–Cu–SiC composites, however, a liquid phase was formed and spread through particle boundaries filling the interfaces or voids between SiC particles and the matrix powders. The coated copper on SiC particles produced a somewhat better filling of the interface or voids, resulting in a little more densification and better sintered strength. Since the solubility of copper in aluminum is less than 2% at the sintering temperature, the alloying of copper in the aluminum matrix was limited. Most of the copper added was dissolved in the liquid phase during the sintering and precipitated as CuAl2 phase upon cooling.  相似文献   

7.
通过化学方法成功地实现了矿物粉体在Ca (OH)2-H2O-CO2 体系中的表面纳米化修饰, 即在微米级重质碳酸钙、硅灰石粉体表面形核生成粒径均匀的纳米碳酸钙颗粒层。研究表明, 表面纳米化修饰后的矿物粉体表面的粗糙度大大增加, 尖锐的棱角得以钝化, 纳米化修饰后矿物粉体比表面积比原来提高至少200 %以上。将经表面纳米化修饰后的硅灰石粉体在聚丙烯(PP) 中填充应用, 较未经表面纳米化修饰的硅灰石粉体填料, 其抗冲击强度提高65 %以上, 延伸率提高200 %以上。  相似文献   

8.
In this study, the formation and characterisation of Aluminium (Al)-based composites by mechanical alloying and hot extrusion were investigated. Initially, the vanadium trialuminide (Al3V) particles with nanosized structure were successfully produced by mechanical alloying and heat treatment. Al3V–Al2O3 reinforcement was synthesised by mechanochemical reduction during milling of V2O5 and Al powder mixture. In order to produce composite powders, reinforcement powders were added to pure Al powders and milled for 5?h. The composite powders were consolidated in an extrusion process. The results showed that nanostructured Al-10?wt-% Al3V and Al-10?wt-% (Al3V–Al2O3) composites have tensile strengths of 209 and 226?MPa, respectively, at room temperature. In addition, mechanical properties did not drop drastically at temperatures of up to 300°C.  相似文献   

9.
High surface area silver powder was prepared through Tollens process. The process involves reduction of Tollens reagent under sonication at room temperature. By gradually adding Tollens reagent into the mixture of glucose solution and sodium hydroxide solution, the silver powder forms immediately without silver mirror formation at container wall. The powders prepared through this process were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), particle size distribution and surface area. The powders were cubic crystalline silver with bimodal distribution and primary particle size of < 1 μm and surface area of 1.8 m2/g. The yield of silver powder was higher than 99%.  相似文献   

10.
为获得更好的防护+装饰双重效果,采用不同粒径(200,400,800,1 000,1 200目)的铜金粉,利用机械镀技术在钢铁基体表面制备了铜-锌复合镀层。采用称重法分析了镀层的致密度,采用贴滤纸法检验了镀层孔隙率,采用划线划格法分析了镀层的结合强度,采用全浸腐蚀法及电化学极化法分析了镀层的耐腐蚀性能。结果表明:不同粒径铜金粉制备的镀层均覆盖完整,随铜粉粒径减小,复合镀层孔隙分布减少;随着铜粉粒径的减小,镀层的致密度逐渐增加,当铜粉粒径为1 000目时,Cu-Zn镀层的致密度已大于金属锌的密度;随着铜粉粒径的减小,镀层的结合强度增加,当铜粉粒径为200目时镀层的结合强度较差,而铜粉粒径小于400目时镀层的结合强度明显提高;随着铜粉粒径的减小,镀层的全浸腐蚀速率逐渐减小,耐腐蚀性增强。  相似文献   

11.
High-energy milling was used for production of Cu–Al2O3 composites. The inert gas-atomized prealloyed copper powder containing 2 wt.%Al and the mixture of the different sized electrolytic copper powders with 4 wt.% commercial Al2O3 powders served as starting materials. Milling of prealloyed copper powders promotes formation of nano-sized Al2O3 particles by internal oxidation with oxygen from air. Hot-pressed compacts of composites obtained from 5 and 20 h milled powders were additionally subjected to the high-temperature exposure in argon at 800 °C for 1 and 5 h. Characterization of processed material was performed by optical and scanning electron microscopy (SEM), X-ray diffraction analysis (XRD), microhardness, as well as density and electrical conductivity measurements. Due to nano-sized Al2O3 particles microhardness and thermal stability of composite processed from milled prealloyed powders are higher than corresponding properties of composites processed from the milled powder mixtures. The results were discussed in terms of the effects of different size of starting copper powders and Al2O3 particles on the structure, strengthening of copper matrix, thermal stability and electrical conductivity of Cu–Al2O3 composites.  相似文献   

12.
The magnetic permeability of a 77 Ni-14 Fe-5 Cu-4 Mo wt % alloy made by powder metallurgy is known to be improved by extending the sintering time considerably beyond that normally used. The room temperature measurement of resistivity during the sintering cycle of such an alloy clearly shows the overlapping stages of change that occur during the sintering process. The variation in resistivity and its relationship with the changes in density, in weight and in bend strength of compacts shows that de-oxidation of the constituent element powders occurs initially. De-oxidation is followed by sintering and alloying of the nickel and iron which is followed in turn by alloying of the molybdenum. The final stage involves the alloying of the copper and the elimination of pores.Electron microprobe analysis has shown that the copper does not alloy substantially until the copper particles melt, and that alloying is hindered if copper powder of large particle size is used. Sintering occurs more rapidly than alloying, but the rate of alloying is the most important factor in determining the electrical and magnetic properties of the alloy.  相似文献   

13.
α-Al2O3为原料, 采用碳热还原氮化法合成AlON粉体, 利用活性炭和亚微米碳粉改变球磨后一次粉体(α-Al2O3和C混合粉体)的形核密度, 并研究形核密度对AlON粉体相组成、形貌及其透明陶瓷透光性的影响。结果表明, 形核密度不同的一次粉体在1750℃保温60 min均能合成纯相AlON粉体, 但是所合成的两种AlON粉体形貌和性能差异较大。高形核密度下(添加活性炭)合成的AlON粉体形貌不规则、结构疏松且晶粒较小, 并易于球磨获得细颗粒粉体(~0.93 μm); 而低形核密度下(添加亚微米碳粉)合成的AlON粉体整体形貌呈近球形, 晶粒发育较完整, 且尺寸较大, 该粉体球磨后颗粒尺寸较大(~2.13 μm)。因此, 形核密度是影响AlON粉体形貌、结构特征和破碎性的主要因素。研究结果表明, 高形核密度粉体合成的AlON粉体具有更好的烧结活性, 它在1880℃保温150 min获得的透明陶瓷最大红外透过率达76.5% (3 mm厚), 比低形核密度粉体制备的透明陶瓷提高48.3%。因此, 以α-Al2O3为原料时, 提高形核密度有利于制备颗粒较小的高活性AlON粉体, 该粉体适合制备高透过率AlON透明陶瓷。  相似文献   

14.
采用卧式高能球磨和机械合金化工艺制备了纳米碳管增强铜基(CNTs/Cu)复合粉体,并采用真空冷压烧结制备出CNTs/Cu复合材料,研究了高能球磨工艺参数对复合粉体与材料性能的影响规律,包括球磨时间和搅拌轴转速对复合粉体粒度、松装密度以及力学性能的影响,结果表明,高能球磨技术有利于CNTs与铜的界面结合和机械合金化。高能球磨的最佳工艺条件:搅拌轴线速度4.2/5.4m/s,球磨时间2~4h,得到的CNTs/Cu复合粉体的中位径为11.76μm,松装密度为1.356g/cm3。CNTs/Cu复合材料的致密度到达94%,硬度到达92HB,抗拉强度到达138Mpa。  相似文献   

15.
Copper matrix composite reinforced with ZrB2 particles was prepared by in situ reaction in two different ways: by mechanical alloying and subsequent hot pressing, i.e. mechanical alloying and followed by laser melting process. Microstructural changes during mechanical alloying, hot pressing and laser melting of Cu, Zr and B powder mixtures were studied using scanning electron microscopy and X-ray diffraction. In particular, changes in the Cu particle size, structural parameters of the powder mixtures and formation of new ZrB2 and CuZr phases during hot pressing, i.e. laser melting were investigated. The mechanisms of in situ formation of reinforcement particles and hardening effects in the copper composite were also studied. Large supersaturation which is possible with laser melting process results in homogeneous nucleation of CuZr precipitates and the presence of finer CuZr precipitates and ZrB2 reinforcements in the Cu matrix. This affected on significantly higher degree of Cu matrix hardening compared to composites obtained by mechanical alloying and hot pressing.  相似文献   

16.
Arsenic element refines W powders significantly during the hydrogen reduction process of tungsten oxide in our previous studies. In this paper, the nanocrystalline WC-As composite powders were prepared by carbonization of nano W-As composite powders and the effects of arsenic on the growth of WC powder were discussed in detail. The prepared samples were characterized by X-ray diffraction, differential scanning calorimetric analysis, scanning electron microscope, transmission electron microscope, X-ray photoelectron spectroscopy and Inductively Coupled Plasma. The results showed that arsenic appropriately raised the initial temperature of carbonization, significantly accelerated carbonization reaction process and shorten the reaction time. Moreover, WC-As composite powders merged and grew up directly without particle expansion and cracking. And the nano WAs2 particles attached to WC grain boundaries and hindered the growth of WC grain through grain boundary migration. The above two effects resulted in the WC-As composite powders prepared at 1300?°C for 2?h with the average size of about 121?nm in diameter.  相似文献   

17.
Mechanical alloying followed by hot-pressing consolidation has been used to produce NbCr2 intermetallics under different conditions. High-purity Nb and Cr crystalline powders, in the relative (molar) ratio of 13:1, were milled for periods up to 100 h. This powder was vacuum-sintered at temperatures ranging from 1423 to 1573 K for 0.5 h under a pressure of 45 MPa. The phase transformations of the NbCr2 were investigated by X-ray diffraction and scanning electron microscopy; several different phase transformations were observed. Increasing the milling time up to 100 h transforms into a mixture of C14, Nb, Cr and C15. The experimental results show that new evidence based on X-ray diffraction measurements further establishes the existence of a high-temperature C14 Laves polytype; an intermediate C36 structure for NbCr2, reported in the literature, was not detected in this study. The relationship between the various phase transformations, based on the atomic radii and different preparation techniques, is discussed.  相似文献   

18.
The Fe-based self-fluxing alloy powders and SiC particles were mixed and milled by high energy ball-milling, and their microstructure and micro-hardness were investigated after subsequent compaction and sintering. The initial alloy powders with a mean size of approximately 80 microm were fined to 2.1 microm after milling at 800 rpm for 5 h. However, the powder mixture of alloy powder and SiC particle showed much larger powder size compared to the initial alloy powders. The bulk composites were obtained from the powder mixture by compaction under a pressure of 800 MPa for 10 min and sintering at 1073 K for 3 h. The composites had much higher micro-hardness of more than 700 Hv compared to alloy powder. The micro-hardness of composites slightly increased with the content of SiC particles.  相似文献   

19.
Elemental powders of Fe and Al were mechanically alloyed using a high energy rate ball mill. A nanostructure disordered Fe(Al) solid solution was formed at an early stage. After 28 h of milling, it was found that the Fe(Al) solid solution was transformed into an ordered FeAl phase. During the entire ball milling process, the elemental phase co-existed with the alloyed phase. Ball milling was performed under toluene to minimise atmospheric contamination. Ball milled powders were subsequently annealed to induce more ordering. Phase transformation and structural changes during mechanical alloying (MEA) and subsequent annealing were investigated by X-ray diffraction (XRD). Scanning electron microscope (SEM) was employed to examine the morphology of the powders and to measure the powder particle size. Energy dispersive spectroscopy (EDS) was utilised to examine the composition of mechanically alloyed powder particles. XRD and EDS were also employed to examine the atmospheric and milling media contamination. Phase transformation at elevated temperatures was examined by differential scanning calorimeter (DSC). The crystallite size obtained after 28 h of milling time was around 18 nm. Ordering was characterised by small reduction in crystallite size while large reduction was observed during disordering. Micro hardness was influenced by Crystallite size and structural transformation.  相似文献   

20.
A regression analysis is presented on the solid particle erosion results of copper and copper alloys impacted by angular and spherical silica particles at normal incidence. Particle shape, particle size, and zinc content of materials were selected as factors. Also, three levels were assigned to each factor. Experiments were performed under 50 mTorr vacuum utilizing an electrostatic accelerator erosion tester. A total of 10 g particles were sent to each substrate material in 10 increments. At the end of the experiments, the extent of erosion was calculated by dividing weight loss to the amount of particles sent. A regression analysis was conducted on the erosion data to see the individual and interaction effects of factors chosen.

Results indicate that quadratic components of zinc content, particle shape, and particle size and linear interaction between particle size and zinc content were effective in defining erosion in this study.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号