首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 328 毫秒
1.
微胶囊红磷阻燃剂在低密度聚乙烯材料中的应用研究   总被引:5,自引:1,他引:5  
研究了微胶囊红磷不同包覆、用量、粒径及与其它阻燃剂的协效作用等因素对低密度聚乙烯(LDPE)材料的阻燃性、力学性能及抑烟性能的影响。蜜胺树脂囊材包覆与蜜胺树脂/硼酸锌双层囊材包覆微胶囊红磷在聚乙烯(PE)中的阻燃性最好;8phr的微胶囊红磷添加量即可使材料的阻燃性能达UL 94V-0级,极限氧指数(LOI)从17.4%上升到22.5%;在添加量范围内对材料的力学性能影响很小;二元体系中,微胶囊红磷/氢氧化铝,微胶囊红磷/氢氧化镁与微胶囊红磷/硼酸锌复配具有良好的阻燃协效作用,协效指数分别为1.6、1.4和2.3,微胶囊红磷/硼酸锌二元复合体系有良好的抑烟协效作用,三元体系中,微胶囊红磷/硼酸锌/十溴联苯醚、微胶囊红磷/氢氧化铝/氢氧化镁和微胶囊红磷/硼酸锌/三聚氰胺体系有很好的阻燃协效作用,协效指数分别为2.6、2.1与2.0。  相似文献   

2.
采用微胶囊红磷(MRP)协效碱式硫酸镁晶须(MOS)制备阻燃聚丙烯(PP)复合材料,研究了MOS/MRP添加量对PP复合材料阻燃性能的影响并探究了其阻燃机理。研究发现,当保持MOS/MRP总添加量为40 phr时,随着MRP添加量的增加,PP复合材料阻燃性能提高;当MRP添加量为10 phr时阻燃性能最好,极限氧指数(LOI)达到25.9%,垂直燃烧等级为UL94 V-0级。当MRP与MOS复配使用时,燃烧过程中相互作用,生成了致密、光滑且密封性好的残炭层,阻碍了表层内能量的传导和与外界物质的交换,提高了复合材料的热稳定性,从而产生了较好的阻燃效果。  相似文献   

3.
微胶囊红磷阻燃剂在软质聚氨酯泡沫塑料中的应用研究   总被引:13,自引:0,他引:13  
研究了微胶囊红磷不同包覆、用量、粒度及与其它阻燃剂的协效作用等因素对软质聚氨酯泡沫塑料的阻燃性能、力学性能及抑烟性能的影响。三聚氰胺~甲醛树脂/硼酸锌双层囊材包覆微胶囊红磷在聚氨酯中的阻燃性最好;3份的微胶囊红磷添加量即可使材料的阻燃性能达UL94V-0级,氧指数(LOI)从17.7%上升到28.8%;在适当的添加量范围内对材料的力学性能影响很小;粒径的逐渐减小,材料氧指数值逐渐增大,阻燃性提高,拉伸强度和伸长率随粒径增大而略有降低;二元体系中,微胶囊红磷/硼酸锌与微胶囊红磷/十溴联苯醚复配具有很好的阻燃协效作用,协效指数分别为2.4和1.4,三元体系中,微胶囊红磷/韧弭酸锌什溴联苯醚体系有很好的阻燃协效作用,协效指数为1.6,LOI为34.9%。  相似文献   

4.
环氧树脂/微胶囊红磷电子电气封装材料的研制   总被引:1,自引:0,他引:1  
以环氧树脂为基体、微胶囊红磷为阻燃剂,研制了电子电气封装材料,研究了微胶囊红磷含量对材料阻燃性能、力学性能及抑烟性能的影响。当加入10份微胶囊红磷时可使材料的阻燃性能达到UL94V-0级,氧指数从19.5%提高到28.2%;微胶囊红磷的添加量在一定的范围内对材料的力学性能影响很小,当添加量增至14份时,材料的拉伸强度略有下降,从48.84MPa下降至46.92MPa,弯曲强度先略有提高而后有所降低,而冲击强度从9.29kJ/m^2提高到10.28kJ/m^2;微胶囊红磷与硼酸锌的复配体系具有很好的抑烟性能。  相似文献   

5.
选取成炭性聚合物聚苯醚(PPO)、聚碳酸酯(PC)、聚醚酰亚胺(PEI),分别添加到高抗冲聚苯乙烯(HIPS)/有机蒙脱土(OMMT)复合体系中,极限氧指数(LOI)及水平垂直燃烧试验结果表明,复合体系的阻燃性能变化很小。将传统阻燃剂红磷(RP)与成炭性聚合物并用,可使HIPS/OMMT复合体系阻燃性能特别是水平垂直燃烧性能大幅提高。试验结果表明:红磷用量适中,添加较少量的成炭性聚合物,便能使复合体系分别达到水平燃烧FH-1级和垂直燃烧FV-0级。  相似文献   

6.
无卤阻燃HIPS的研究   总被引:1,自引:0,他引:1  
采用熔融法制备包括可膨胀石墨(EG)、红磷(RP)、氢氧化铝(ATH)体系的阻燃高抗冲聚苯乙烯(HIPS)复合材料;采用锥形量热仪、氧指数、垂直燃烧法研究其对HIPS的阻燃性能的影响。结果表明:HIPS/EG/RP-ATH复合材料的热释放速率及其峰值。质量损失速率等燃烧性能参数继续降低,且火灾性能指数和氧指数大幅提高,UL 94垂直燃烧可以达到FV-0级;结合复合材料燃烧残余物形态,发现EG和RP之间具有明显的协同阻燃效应。  相似文献   

7.
微胶囊红磷阻燃剂在环氧封装材料中的应用   总被引:2,自引:0,他引:2  
研究了微胶囊红磷对环氧树脂基电子电气封装材料的阻燃性能、力学性能及抑烟性能的影响。结果表明:添加10份微胶囊红磷即可使材料的阻燃性能达到UL94V—O级,氧指数从19.5%上升到28.2%;添加量在一定的范围内对材料的力学性能影响很小,添加量从0增加至14份时,材料的拉伸强度略有下降,冲击强度有所上升,弯曲强度略有上升后有所降低;微胶囊红磷与硼酸锌的复配体系具有很好的抑烟性能。  相似文献   

8.
采用UL 94垂直燃烧(UL 94)、极限氧指数(LOI)、热重分析(TGA)方法研究了红磷阻燃长玻纤增强聚酰胺6(LGFPA6)的阻燃性能和热性能。UL 94、LOI和TGA测试表明:随着红磷阻燃剂含量的增加,LOI值逐渐增大,T5%和热分解速率逐渐降低,残炭量增加;热降解动力学表明:红磷阻燃LGFPA6的平均热解活化能增加,说明红磷阻燃LGFPA6复合材料的热降解反应不易发生。  相似文献   

9.
聚磷酸铵(APP)单独应用于阻燃环氧树脂(EP)时,阻燃效率较低,往往需要较大的添加量才能达到环氧树脂复合材料的阻燃要求。通过制备层状双金属氢氧化物Zn-Fe-LDH,然后将其与聚磷酸铵复配引入环氧树脂中,成功制备出阻燃型复合材料(Zn-Fe-LDH+APP)/EP。极限氧指数(LOI)及垂直燃烧(UL94)测试表明,当Zn-Fe-LDH和APP的总添加量为5%时,(Zn-Fe-LDH+APP)/EP的LOI为28.6%,UL94可达V-1级,锥形量热结果表明,相比较纯APP,Zn-Fe-LDH和APP体系可明显降低环氧树脂的热释放和烟释放。  相似文献   

10.
以预先合成的密胺甲醛树脂预聚物为壳,通过原位聚合法制备了微胶囊红磷,采用扫描电镜观察到微胶囊红磷颗粒表面包覆一层网状的壳材料。研究了红磷和微胶囊红磷阻燃环氧树脂(EP)的耐热性能、阻燃性能及力学性能。结果表明,微胶囊红磷阻燃EP的耐热性和质量保持率明显提高,添加质量分数10%的微胶囊红磷的阻燃EP的阻燃性能达到UL 94 V–0级,其阻燃性能优于红磷阻燃EP。微胶囊红磷阻燃EP的拉伸强度为30.3 MPa,冲击强度为11.4 kJ/m2,分别比相同用量红磷阻燃EP提高了6.0%和21.3%,其冲击强度比纯EP提高了17.5%,表明微胶囊红磷与基体树脂间的相容性大大改善,可显著提高材料的韧性。  相似文献   

11.
以十溴二苯乙烷(DBDPE)、三氧化二锑和硼酸锌等作阻燃剂,以超细芳纶浆粕短纤维作耐烧蚀材料,通过共混方式制备了EPDM阻燃材料和耐烧蚀材料。研究了EPDM阻燃复合材料的阻燃性能、物理机械性能和燃烧炭化层微观结构形态。结果表明,三氧化二锑/硼酸锌/DBDPE用量分别为8份/20份/20份时,阻燃复合材料极限氧指数可达26.9%,垂直燃烧级别达到UL94—V0级;加入60份DBDPE时,极限氧指数达到36.3%;DBDPE/三氧化二锑/硼酸锌用量分别在60份/15份/20份以下时,对EPDM硫化胶拉伸性能无不利影响;三氧化二锑能明显提高DBDPE的阻燃性能;加入硼酸锌后氧指数略有提高,且明显改善抑烟效果和成炭效果;加入芳纶浆粕短纤维,对阻燃性能影响不大,但能明显改善炭化层致密性。  相似文献   

12.
采用线型酚醛(Novolac)与微胶囊红磷(MRP)复配阻燃,制备了无卤阻燃丙烯腈-丁二烯-苯乙烯(ABS)复合材料。研究了Novolac/MRP质量比和用量对阻燃ABS性能的影响。研究结果表明:Novolac/MRP的质量比为3/2,总量为15%(质量分数)时,可以制备极限氧指数(LOI)为26.7%,垂直燃烧(UL94)V-0级的无卤阻燃ABS;Novolac的酚羟基与MRP燃烧产生的聚磷酸在高温下发生的脱水成炭反应减缓了ABS的分解;SEM炭层形貌分析表明:Novolac/MRP复合阻燃ABS材料燃烧表面形成了平整、致密的炭层,该炭层能够有效地隔绝燃烧过程所产生的易燃气体及热量,起到较好的阻燃效果。  相似文献   

13.
A series of flame-retardant polycarbonate (PC) composites with different ratios of phosphazene-triazine bi-group flame retardant (A3) were prepared. The flame retardant performance and thermal stability of PC/A3 composites were characterized by LOI, UL 94 vertical burning test, cone calorimetry test and TG. Results show that when the addition of A3 is 13.5%, the PC/A3 composite can pass UL94 V-0 level with a LOI value of 29.3% and reduce the peak heat release rate by 47.5% during the combustion. TG results show that adding 5% A3 can increase the initial decomposition temperature of the PC by 7°C in nitrogen and 9°C in air. Investigation of the morphology and chemical structure of char residue demonstrates that A3 promotes the formation of more complete and compact char residue which acts as physical barriers to inhibit the transfer of heat and oxygen, resulting the good flame retardant properties. The analysis of gaseous pyrolysis product reveals that A3 also exerts a flame-retardant effect in gas phase by releasing PO· free radicals.  相似文献   

14.
磷/硅复配体系阻燃环氧树脂的协同效应   总被引:1,自引:0,他引:1  
通过原位溶胶-凝胶法制备了磷/硅协同阻燃环氧树脂,测试了其阻燃和热稳定性能,并通过傅立叶红外光谱表征了协同体系中主要的官能团。当复配体系中的磷、硅元素达到一定配比时,环氧树脂的极限氧指数(LOI)从19.8%提高到26.5%,达到UL94V-0级,表明硅和磷两种元素在环氧树脂中具有良好的协同阻燃效应。  相似文献   

15.
以间苯二胺为固化剂,聚苯氧基磷酸210氢9氧杂磷杂菲对苯二酚酯(POPP)、聚磷酸铵(APP)为阻燃剂, 复配质量分数为1 %有机蒙脱土(OMMT)为膨胀阻燃体系,对环氧树脂(EP)进行阻燃改性。通过极限氧指数测定仪、垂直燃烧测定仪同步热分析仪、锥形量热等研究改性EP的阻燃性能、热性能和力学性能。结果表明,当膨胀阻燃体系(2.5 %POPP/APP+1 %OMMT)添加量为3.5 %时,改性EP可达UL 94 V-0级,同时LOI为25.2 %;当膨胀阻燃体系添加量为11 %时,改性EP的LOI值进一步升高到31.7 %;阻燃剂的加入,使EP的初始分解温度略有降低,但残炭量明显增加;POPP/APP/OMMT的加入很大程度上降低了EP的热释放速率、烟释放量和平均热释放速率。  相似文献   

16.
采用熔融共混技术,将次磷酸铝(AHP)和三聚氰胺氰尿酸盐(MC)引入聚丁二酸丁二醇酯(PBS),制备了一系列阻燃PBS复合材料,并采用极限氧指数、垂直燃烧、微型量热测试以及热失重分析研究了复合材料的阻燃性能以及热稳定性。结果表明,AHP可以有效提高PBS复合材料的阻燃性能;AHP与MC复配可以进一步提高复合材料的阻燃性能,两者质量比为2∶1,添加量为20 %(质量分数,下同)即可使复合材料达到UL 94 V 0级别,极限氧指数达到29 %;AHP以及复合阻燃体系可以有效提高复合材料初始分解温度及其高温稳定性。  相似文献   

17.
将含镍金属有机框架材料(Ni-MOF)与焦磷酸哌嗪(PPAP)复配后添加到环氧树脂(EP)中,通过极限氧指数(LOI)、垂直燃烧(UL 94)及锥形量热(CONE)测试研究了材料的阻燃性能及烟释放行为。结果表明,添加6%(质量分数,下同)的PPAP时,材料的LOI值为27.9%,垂直燃烧测试通过了UL 94 V-0级;当PPAP与Ni-MOF以质量比99∶1混合,总添加量为5%时,材料的LOI值达到29.3%并通过了UL 94 V-0级;极少量Ni-MOF的加入,有效提高了材料的阻燃效率。CONE测试表明,在相同阻燃剂添加量下,EP/PPAP/Ni-MOF材料的热释放速率、总热释放量、烟释放速率及总烟释放量,与EP/PPAP材料相比均得到了明显降低;Ni-MOF的引入,降低了材料的燃烧强度,减少了烟气的释放;Ni离子与PPAP受热分解形成的磷酸及多聚磷酸发生交联,将更多的磷留在了凝聚相中,促进了材料形成更加丰富、强度更高的炭层,有效抑制EP燃烧过程中热量和烟气的释放,从而提高了EP材料的火安全性能。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号