首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
This work explores near-term approaches for improving the low-temperature properties of triglyceride oil-derived fuels for direct-injection compression-ignition (diesel) engines. Methyl esters from transesterified soybean oil were evaluated as a neat fuel and in blends with petroleum middle distillates. Winterization showed that the cloud point (CP) of methyl soyate may be reduced to −16°C. Twelve cold-flow additives marketed for distillates were tested by standard petroleum methodologies, including CP, pour point (PP), kinematic viscosity, cold filter plugging point (CFPP), and low-temperature flow test (LTFT). Results showed that additive treatment significantly improves the PP of distillate/methyl ester blends; however, additives do not greatly affect CP or viscosity. Both CFPP and LTFT were nearly linear functions of CP, a result that compares well with earlier studies with untreated distillate/methyl ester blends. In particular, additives proved capable of reducing LTFT of neart methyl esters by 5–6°C. This work supports earlier research on the low-temperature properties; that is, approaches for improving the cold flow of methyl ester-based diesel fuels should continue to focus on reducing CP.  相似文献   

2.
Thermal analysis of alternative diesel fuels from vegetable oils   总被引:10,自引:6,他引:4  
The relatively poor cold-flow properties of monoalkyl esters of vegetable oils and animal fats (biodiesel) present a major obstacle to their development as alternative fuels and extenders for combustion in direct injection compressionignition (diesel) engines. In this work, differential scanning calorimetry (DSC) heating and cooling curves of methyl soyate (SME), methyl tallowate (TME), SME/TME admixtures, and winterized SME were analyzed. Completion of melt, crystallization onset (Onset), and other temperatures corresponding to melting and freezing peaks were correlated to predict cloud point (CP), pour point (PP), cold filter plugging point (CFPP), and low-temperature flow test (LTFT) data. Effects of treating methyl esters with cold-flow improvers were examined. Low-temperature flow properties of biodiesel may be accurately inferred from subambient DSC analyses of high-melting or freezing (β-form) peaks. The temperature of maximal heat flow for freezing peaks gave the best accuracy for predicting CP, PP, and CFPP, while freezing point gave the best accuracy for predicting LTFT. Onset also gave good correlations with respect to predicting PP, CFPP, and LTFT. Cooling scan parameters were more reliable than heating scan parameters. Presented at the 88th American Oil Chemists’ Society’s Annual Meeting & Expo, Seattle, Washington, May 11–14, 1997.  相似文献   

3.
The low-temperature properties of mono-alkyl esters derived from tallow and recycled greases were determined for neat esters and 20% ester blends in No. 2 low-sulfur diesel fuel. Properties studied included cloud point, pour point, cold filter plugging point, low-temperature flow test, crystallization onset temperature, and kinematic viscosity. Compositional properties of the alkyl esters determined included water, residual free fatty acids, and free glycerol content. In general, the secondary alkyl esters of tallow showed significantly improved cold-temperature properties over the normal tallow alkyl ester derivatives. The low-temperature flow test did not show a 1:1 correlation with cloud point as previously observed with methyl soyate and methyl tallowate. For the homologous series methyl to n-butyl tallowate, ethyl tallowate had the best broad-spectrum low-temperature properties, both neat and when blended in diesel fuel. For the greases studied, both the normal and branched alkyl ester derivatives showed improved properties over corresponding tallow esters, especially with neat esters.  相似文献   

4.
Three monoalkyl fatty acid esters derived from tallow and grease were prepared by lipase-catalyzed transesterification and evaluated as prospective diesel engine fuels. The low-temperature properties of the esters, both neat and as 20% blends in No. 2 diesel fuel, were evaluated. Those properties included cloud point, pour point, cold filter plugging point, low-temperature flow test, and crystallization onset temperature. Other properties of the esters, such as kinematic viscosity, heating value, and calculated cetane number, also were determined. All three esters had acceptable physical and low-temperature properties, as well as acceptable fuel properties at the 20% level in diesel blends. Engine performance and emissions for the ester blends were determined in a direct-injection, matched two-cylinder diesel engine. Among the monoalkyl esters studied, ethyl greasate had better properties and engine performance characteristics than the two tallow esters. For the latter esters, isopropyl tallowate had better properties than ethyl tallowate. Presented in part at the 88th Annual Meeting of American Oil Chemists’ Society, Seattle, WA, May 1997.  相似文献   

5.
Three monoalkyl fatty acid esters derived from tallow and grease were prepared by lipase-catalyzed transesterification and evaluated as prospective diesel engine fuels. The low-temperature properties of the esters, both neat and as 20% blends in No. 2 diesel fuel, were evaluated. Those properties included cloud point, pour point, cold filter plugging point, low-temperature flow test, and crystallization onset temperature. Other properties of the esters, such as kinematic viscosity, heating value, and calculated cetane number, also were determined. All three esters had acceptable physical and low-temperature properties, as well as acceptable fuel properties at the 20% level in diesel blends. Engine performance and emissions for the ester blends were determined in a direct-injection, matched two-cylinder diesel engine. Among the monoalkyl esters studied, ethyl greasate had better properties and engine performance characteristics than the two tallow esters. For the latter esters, isopropyl tallowate had better properties than ethyl tallowate. Presented in part at the 88th Annual Meeting of American Oil Chemists’ Society, Seattle, WA, May 1997.  相似文献   

6.
FAME of lard, beef tallow, and chicken fat were prepared by base-catalyzed transesterification for use as biodiesel fuels. Selected fuel properties of the neat fat-derived methyl esters (B100) were determined and found to meet ASTM specifications. The cold-flow properties, lubricity, and oxidative stability of the B100 fat-derived fuels also were measured. In general, the cold-flow properties of the fat-based fuels were less desirable than those of soy-based biodiesel, but the lubricity and oxidative stability of the fat-based biodiesels were comparable to or better than soy-based biodiesel. Nitrogen oxide (NOx) emission tests also were conducted with the animal fat-derived esters and compared with soybean oil biodiesel as 20 vol% blends (B20) in petroleum diesel. The data indicated that the three animal fat-based B20 fuels had lower NOx emission levels (3.2–6.2%) than did the soy-based B20 fuel.  相似文献   

7.
The aims of the present study were to evaluate the cold temperature behavior of methyl esters of vegetable and animal origin and of their mixtures with fossil diesel fuel, as well as to investigate the effectiveness of different depressants. Various blends of rapeseed oil methyl esters, linseed oil methyl esters, pork lard methyl esters and fossil diesel fuel were prepared, and both cloud point and cold filter plugging point (CFPP) were analyzed. It was found that mixtures with CFPP values of –5 °C and lower may contain up to 25% of pork lard methyl esters; whereas the ratio of summer fossil diesel fuel and rapeseed oil methyl esters may vary over a wide range, i.e. such mixtures can be used in a diesel engine in the summer. In the transitory periods it is possible to use up to 20% animal and vegetable ester blends (3 : 7) with winter fossil diesel, whereas only up to 5% of esters can be added to the fuel used in winter. In order to improve the cold properties of rapeseed oil, pork lard and linseed oil methyl ester mixtures, various additives were tested. Depressant Viscoplex 10–35 with an optimal dose of 5000 mg/kg was found to be the most effective.  相似文献   

8.
Vegetable oils are an attractive renewable source for alternative diesel fuels. However, the relatively high kinematic viscosity of vegetable oils must be reduced to make them more compatible with conventional compression-ignition engines and fuel systems. Cosolvent blending is a low-cost and easy-to-adapt technology that reduces viscosity by diluting the vegetable oil with a low-M.W. alcohol (methanol or ethanol). The cosolvent (A), which consists of one or more amphiphilic compounds, is added to solubilize the otherwise nearly immiscible oil-polar alcohol mixture. This work investigates cold flow properties and phase equilibrium behavior associated with blends consisting of soybean oil (SBO) and methanol where A=8∶1 (mol) n-butanol/oleyl alcohol; 6∶1 (mol) 2-octanol/triethylammonium linoleate; and 4∶1 (mol) 2-octanol/Unadol 40 (alcohols from SBO FA); and a blend of 2∶1 (vol/vol) No. 2 diesel fuel/SBO and 95% ethanol where A=n-butanol. Cloud point (CP), pour point, cold filter plugging point (CFPP), and low-temperature flow test (LTFT) results were compared with corresponding phase separation temperature (T ϕ) data measured at equilibrium. Although CP data were measured under non-equilibrium experimental conditions, a nearly linear correlation was found between T ϕ and CP. Statistical analysis showed that T ϕ may also be correlated with CFPP and LTFT. Analysis of heating and cooling DSC curves indicated that peak temperatures may be employed to predict cold flow properties and T ϕ behavior for SBO/cosolvent blends. Cooling curve parameters correlated more readily than heating curve parameters. Finally, relatively low quantities of heat evolved during freezing indicated that crystallization in the SBO/cosolvent blends studied in this work occurs easily during cooling.  相似文献   

9.
The kinematic viscosities of four biodiesel fuels—two natural soybean oil methyl esters, one genetically modified soybean oil methyl ester, and one yellow grease methyl ester—and their 75, 50, and 25% blends with No. 2 diesel fuel were measured in the temperature range from 20 to 100°C in steps of 20°C. The measurements indicated that all these fuels had viscosity-temperature relationships similar to No. 2 diesel fuel, which followed the Vogel equation as expected. A weighted semilog blending equation was developed in which the mass-based kinematic viscosity of the individual components was used to compute the mixture viscosity. A weight factor of 1.08 was applied to biodiesel fuel to account for its effect on the mixture viscosity. The average absolute deviation achieved with this method was 2.1%, which was better than the uncorrected mass average blending equation that had an average absolute deviation of 4.5%. The relationship between the viscosity and the specific gravity of biodiesel fuels was studied. A method that could estimate the viscosity from the specific gravity of biodiesel fuel was developed. The average absolute deviation for all the samples using this method was 2.7%. The accuracy of this method was comparable to the weighted mass-based semilog blending equation.  相似文献   

10.
The objective of this study was to determine the effect of various amounts of unsaponifiables and bound glycerol on the crystallization temperatures of methyl soyate used as biodiesel. The preparation of methyl esters did not affect the amount of unsaponifiable matter in biodiesel. A synthetic unsaponifiable mixture added to distilled methyl soyate and blends of methyl soyate and No. 1 diesel fuel (20:80, vol/vol) did not affect the crystallization onset temperature, cloud point, or pour point at concentrations up to 3% by weight. The amounts of monoglycerides and diglycerides in methyl soyate decreased from 2.60 and 9.87%, respectively, to 0% as the methanol/soybean oil ratio increased from 90 to 200% of the theoretical requirement. Transesterification reactions conducted with less than 130% of the theoretical amount of methanol resulted in methyl soyate with a higher cloud point because of the presence of saturated mono- and diglycerides. Pure mono- and diglycerides added to distilled methyl soyate at 0 to 1.0% did not change the pour point of the esters, but the cloud point of esters increased with increasing amount of saturated mono- or diglyceride. Pure saturated mono- or diglyceride presented in concentrations as low as 0.1% increased the cloud point of methyl soyate. Similar results were obtained with mono- and diglyceride mixtures present in incompletely converted methyl soyate.  相似文献   

11.
EsMOVS柴油降凝剂的研制   总被引:9,自引:0,他引:9  
对柴油降凝剂EsMOVS的合成、用途、使用条件、影响因素等作了阐述。此降凝剂对抚顺石油二厂-10#柴油的纯降凝度是18℃,冷滤点纯降低度是9℃。对其它柴油也有一定的降凝助滤效果。  相似文献   

12.
Monoacylglycerols (MAG) are impurities present in biodiesel as a result of incomplete reactions. MAG often solidify in biodiesel even at room temperature because of their high melting points. This worsens the cold-flow properties such as the cloud point and pour point. We hypothesized that several types of MAG solidify simultaneously; therefore, we performed differential scanning calorimetry of binary mixtures of MAG to elucidate their interactions during solidification. Three thermodynamic formulas were then applied to the experimental results: (1) non-solid-solution, (2) solid-solution, and (3) compound formation models. Binary mixtures of MAG showed complicated liquidus curves with multiple upward convex shapes, with which only the compound formation model fitted well. This model was applied to multicomponent mixtures that consisted of MAG and fatty acid methyl esters (FAME) as surrogate biodiesel fuels. We confirmed that the model still worked well. The results show that the compound formation model has good potential for predicting the cold-flow properties of biodiesel.  相似文献   

13.
Fatty acid methyl esters from plant oils are the main component of biodiesel and used as a substitute for petroleum diesel. Biodiesel generally contains a small amount of monoglycerides as intermediate compounds, which have high melting points and often solidify and clog fuel filters. The prediction of the cold-flow property of biodiesel is of great importance for practical application. In this study, a thermodynamic study was conducted for mixtures of monoglycerides and fatty acid methyl esters. Temperatures of the solid–liquid equilibrium for the mixtures were measured by differential scanning calorimetry and visual observation, while the theoretical values were calculated using the modified Universal Quasi-chemical Functional-group Activity Coefficients (UNIFAC) model (Dortmund). The theoretical and experimental results were in good agreement, especially for binary mixtures of monoglycerides and methyl esters. The importance of monoglycerides on the cold-flow properties of biodiesel was determined, and the effects could be well described by the modified UNIFAC model (Dortmund).  相似文献   

14.
以棉籽油生物柴油(CSME)为原料测定其化学组成,与0号柴油(0PD)调合,研究CSME及其调合油的低温流动性能,并添加FlowFit改善CSME及其调合油的低温流动性.研究表明,CSME主要由脂肪酸甲酯组成,其中饱和脂肪酸甲酯和不饱和脂肪酸甲酯的质量分数分别为27.69%和71.65%,冷滤点(CFPP)为-1℃,40℃时运动黏度为4.63 mm2/s;在CSME调合比例为50%时,调合油的CFPP降至-8 ℃,且在相同温度下调合油的运动黏度均低于CSME.添加Flow Fit能显著改善CSME及调合油的低温流动性能,在添加Flow Fit体积分数不超过3%时,CSME、B50、B20、B10、B7、B5分别从-1,-8,-5,-4,-3,-3 ℃降低到-5,-16,-25,-24,-25,-23 ℃.  相似文献   

15.
Biodiesel (fatty acid methyl esters [FAME]) is produced from various fats, oils, and greases (FOG) using catalytic transesterification with methanol. These fuels have poor cold-flow properties depending on the fatty acid (FA) composition of the parent FOG. Improving the cold-flow properties of biodiesel will enhance its prospects for use during cooler months in moderate temperature climates. This work is a study on the use of skeletally branched-chain alkyl esters (BCAE) composed of the isopropyl, n-butyl, and 2-ethylhexyl esters of iso-oleic acid isomers (iPr-iOL, nBu-iOL, and 2EH-iOL). These BCAE additives were tested in blends with linear-FAME (L-FAME) derived from soybean oil (SME), lard (LME), tallow (TME), and sewage scum grease (SGME). Binary L-FAME/SME admixtures were also studied. Admixtures were tested for the effects of the additives on cloud point (CP), pour point (PP), and kinematic viscosities at standard (ν40 = 40 °C) and low temperatures (TL) = CP + 5 °C (νL). Although the BCAE additives were more effective than SME, relatively large additive concentrations (yAdd) were needed to depress CP and PP by more than 2 °C. Admixtures with high concentrations of BCAE additive had ν40 > 6.0 mm2 s−1, the maximum limit in ASTM fuel specification D 6751. While the iPr-iOL and nBu-iOL additives may be blended at concentrations up to yAdd = 0.50, 2EH-iOL should not exceed yAdd = 0.28 in LME, 0.31 in SGME, 0.35 in TME, or 0.41 in SME to avoid driving the admixture out of specification. Some anomalies observed in the results at low yAdd for SGME/BCAE admixtures were speculated to have been affected by the low-temperature rheology of SGME.  相似文献   

16.
AMSV-a柴油低温流动改进剂的研制   总被引:4,自引:0,他引:4  
薛兆民 《精细化工》2003,20(3):182-186
介绍了柴油低温流动改进剂AMSV-a的合成和降凝助滤性能。该剂是以丙烯酸酯、马来酸酐、苯乙烯、醋酸乙烯酯(量比为4∶1∶0 5∶1)为原料,以甲苯为溶剂,以过氧化苯甲酰(用量5 0g/mol共聚单体)为引发剂,恒温80℃聚合6h,得四元共聚物(AMSV),再以对甲苯磺酸为催化剂(用量20g/mol共聚单体),用高碳胺〔n(酐)∶n(胺)=1∶1 5〕进行胺解制得。该剂对大庆-10#柴油的纯降凝度可达25℃,冷滤点降低可达16℃;对胜利0#柴油的纯降凝度可达23℃,冷滤点降低可达14℃;对东明5#柴油的纯降凝度可达20℃,冷滤点降低可达11℃;对濮阳10#柴油的纯降凝度可达17℃,冷滤点降低可达9℃。  相似文献   

17.
Biodiesel is an alternative fuel for diesel engines that consists of the monoalkyl esters of vegetable oils or animal fats. Currently, most biodiesel consists of methyl esters, which have poor cold-flow properties. Methyl esters of soybean oil will crystallize and plug fuel filters and lines at about 0°C. However, isopropyl esters have better cold-flow properties than methyl esters. This paper describes the production of isopropyl esters and their evaluation in a diesel engine. The effects of the alcohol amount, the catalyst amount, and two different catalysts on producing quality biodiesel were studied. Both sodium isopropoxide and potassium isopropoxide were found to be suitable for use in the transesterification process. A 20∶1 alcohol/TG molar ratio and a catalyst amount equal to 1% by weight (based on the TG amount) of sodium metal was the most cost-effective way to produce biodiesel fuel. The emissions from a diesel engine running on isopropyl esters made from soybean oil and yellow grease were investigated by comparing them with No. 2 diesel fuel and methyl esters. For nitrogen oxide emission, the difference between the biodiesel produced from soybean oil and yellow grease was greater than the difference between the methyl and isopropyl esters of both feedstocks. The other emissions from using isopropyl esters were about 50% lower in hydrocarbons, 10–20% lower in carbon monoxide, and 40% lower in smoke number when compared with No. 2 diesel fuel.  相似文献   

18.
Fuel properties of tallow and soybean oil esters   总被引:4,自引:0,他引:4  
Fuel properties of beef tallow, soybean oil, their esters, and blends with No. 2 diesel fuel and ethanol were determined. Fuel properties tested were viscosity, specific gravity, API gravity, distillation ranges, calculated cetane index, energy content, flash point, water content, sulfur content, carbon residue, particulate matter, acid value, copper-strip corrosion test, ash content, melting point, cloud point, and pour point. Gas-chromatographic analyses of tallow, soybean oil, and their esters were performed to determine their major constituents. Viscosities of soybean oil and tallow were significantly reduced by esterification. Other fuel properties of the esters and their blends with No. 2 diesel fuel and ethanol were similar to the properties of No. 2 diesel fuel.  相似文献   

19.
Biodiesel is an alternative diesel fuel derived mainly from the transesterification of plant oils with methanol or ethanol. This fuel is generally made from commodity oils such as canola, palm or soybean and has a number of properties that make it compatible in compression‐ignition engines. Despite its many advantages, biodiesel has poor cold flow properties that may impact its deployment during cooler months in moderate temperature climates. This work is a study on the use of skeletally branched‐chain‐fatty acid methyl esters (BC‐FAME) as additives and diluents to decrease the cloud point (CP) and pour point (PP) of biodiesel. Two BC‐FAME, methyl iso‐oleate and methyl iso‐stearate isomers (Me iso‐C18:1 and Me iso‐C18:0), were tested in mixtures with fatty acid methyl esters (FAME) of canola, palm and soybean oil (CaME, PME and SME). Results showed that mixing linear FAME with up to 2 mass% BC‐FAME did not greatly affect CP, PP or kinematic viscosity (ν) relative to the unmixed biodiesel fuels. In contrast, higher concentrations of BC‐FAME, namely between 17 and 39 mass%, significantly improved CP and PP without raising ν in excess of limits in the biodiesel fuel standard specification ASTM D 6751. Furthermore, it is shown that biodiesel/Me iso‐C18:0 mixtures matched or exceeded the performance of biodiesel/Me iso‐C18:1 mixtures in terms of decreasing CP and PP under certain conditions. This was taken as evidence that additives or diluents with chemical structures based on long‐chain saturated chains may be more effective at reducing the cold flow properties of mixtures with biodiesel than structures based on long‐chain unsaturated chains.  相似文献   

20.
Ertan Alptekin 《Fuel》2009,88(1):75-80
Characterizing of the fuel properties of diesel fuels, alternative fuels and their blends can assist the researchers who work on alternative fuels for diesel engines. Therefore, in this study, methyl esters were produced from five edible vegetable oils (sunflower, soybean, canola, corn and cottonseed) and blended with two different diesel fuels at 2%, 5%, 10%, 20%, 50% and 75% on a volume basis to characterize the key fuel properties of the blends such as density, viscosity, pour point, distillation temperatures and flash point. The results showed that the fuel properties of the blends were very close to those of diesel fuels at low concentrations upto 20% of methyl esters.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号