首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
In the present work the formulation and morphology of novel kaolin-filled rubber composites were investigated. The kaolin-filled rubber composites were obtained by filling rubbers such as natural rubber (NR), styrene–butadiene rubber (SBR), polybutadiene rubber (ER), nitrile butadiene rubber (NBR), ethylene propylene diene monomer (EPDM), chloroprene rubber (CR) and methyl vinyl silicon rubber (MVQ). The best formulation of filled rubbers was determined by determining the mechanical and thermal properties of the composites. Structural characterization was carried out by using infrared spectroscopy (IR) and a polarizing light microscope (PLM). The kaolin/rubber composites have outstanding mechanical and thermal properties except elongation at break, and good compatibility. The best formulation of kaolin filled rubbers is respectively 40 parts per hundred rubber (phr), 40 phr, 50 phr, 40 phr, 50 phr, and 50 phr for NR, SBR, BR, NBR, EPDM and CR. Kaolin can replace silica in the specific rubber products, and is suitable to reinforce more steric rigid rubber.  相似文献   

2.
The tribological behaviour of powder metallurgy-processed Al 2024–5 wt% SiC–x wt% graphite (x=0, 5, and 10) hybrid composites was investigated using a pin-on-disc equipment. An orthogonal array, the signal-to-noise ratio and analysis of variance were employed to study the optimal testing parameters using Taguchi design of experiments. The analysis showed that the wear loss increased with increasing sliding distance and load but was reduced with increased graphite content. The coefficient of friction increased with increasing applied load and sliding speed. The composites with 5 wt% graphite had the lowest wear loss and coefficients of friction because of the self-lubricating effect of graphite. Conversely, due to the effect of the softness of graphite, there was an increase in wear loss and the coefficient of friction in composites with 10 wt% graphite content. The morphology of the worn-out surfaces and wear debris was examined to understand the wear mechanisms. The wear mechanism is dictated by the formation of both a delamination layer and mechanically mixed layer (MML). The overall results indicated that aluminium ceramic composites can be considered as an outstanding material where high strength and wear-resistant components are of major importance, particularly in the aerospace and automotive engineering sectors.  相似文献   

3.
Recently, dense monolithic TiB2 and TiB2–20 wt.% MoSi2 composites with high hardness (24–26 GPa) have been processed by hot pressing. To assess the tribological potential, the present study was performed in analyzing the influence of load on the fretting wear of TiB2 and TiB2–MoSi2 composites against bearing steel. Under the investigated conditions, a higher coefficient of friction (COF) of 0.5–0.6 was recorded with all the materials with a lower COF at a higher load of 10 N. Detailed microstructural investigation of the worn surfaces was carried out using SEM–EDS and XRD in order to understand the fretting wear mechanisms. Severe wear (order of 10−5 mm3/N m) was measured for the investigated materials under the selected fretting conditions with lower wear rate for TiB2–20 wt.% MoSi2 composite at all loads (2–10 N). While abrasive wear dominates the material removal process in the case of monolithic TiB2, the tribochemical wear is observed to be the predominant wear mechanism for the composite.  相似文献   

4.
Composites of epoxy resin with diamond-like carbon (DLC) flakes were fabricated. The DLC flakes were prepared from a DLC film deposited by chemical vapor deposition on an aluminum substrate. The tribological properties of composites were evaluated in air and water environments using a reciprocating friction tester and an AISI 440C mating ball. The friction coefficient of the epoxy composite decreased from 0.90 to 0.69 in air and from 0.71 to 0.29 in water with the addition of DLC flakes. The specific wear rate of the composite also decreased from 5 × 10? 5 to 7 × 10? 6 mm3/N m in air and from 4 × 10? 5 to 4 × 10? 6 mm3/N m in water. In contrast, the wear of the mating ball increased. Furthermore, the tribological properties of DLC flakes as an additive in water were evaluated. The suspension of powdered DLC in water reduced the friction coefficient of epoxy resin against the AISI 440C mating ball. Furthermore, the wear of the resin was negligibly small, although severe abrasive wear on the mating ball was observed.  相似文献   

5.
The C-W2B5 composites with W2B5 content of 30 vol.% and 40 vol.% were fabricated by reaction hot pressing sintering. The mechanical properties and friction and wear behavior of the composites were investigated. For comparison, the friction and wear behavior of graphite was also studied. It was found that the presence of W2B5 grain resulted in notable improvements in mechanical properties and wear resistance of the composites compared to graphite in spite of a little higher friction coefficient. A graphite-rich mechanically mixed layer (MML) was formed on the worn surface of the composites, which facilitated the low friction coefficient. Fracture and removal of the MML depending on the fracture toughness of the composites and Hertzian stress levels were considered to be the main wear mechanism.  相似文献   

6.
《Ceramics International》2016,42(6):7107-7117
The Ti3SiC2 and Ti3SiC2/Pb composites were tested under dry sliding conditions against Ni-based alloys (Inconel 718) at elevated temperatures up to 800 °C using a pin-on-disk tribometer. Detailed tribo-chemical changes of Pb on sliding surface were discussed. It was found that the tribological behavior were insensitive to the temperature from 25 °C (RT) to 600 °C (friction coefficient ≈0.61–0.72, wear rate ≈10−3 mm3 N m−1). An amount of Pb in the composites played a key role in lubricating with the temperature below 800 °C. The friction coefficient (≈0.22) and wear rate (≈10−7 mm3 N m−1) at elevated temperatures were both decreased by the added PbO. The wear mechanisms of Ti3SiC2/Pb-Inconel 718 tribo-pair at elevated temperatures were believed to be the combined effect of abrasive wear and tribo-oxidation wear. During the sliding, two oxidization reactions proceed, 2Pb+O2=2PbO (below 600 °C) and 6PbO+O2=2Pb3O4 (800 °C). The friction coefficient and wear rate of the composites were reduced due to the self-lubricating effect of the tribo-oxidation products.  相似文献   

7.
《Ceramics International》2016,42(3):3786-3796
Friction and wear behaviors of self-mated Si3N4 in glycerol aqueous were investigated by varying the temperature (30 °C, 50 °C, and 70 °C) and concentration (pure water, 5 vol%, 20 vol%, and 50 vol%) of glycerol aqueous solution. Friction tests were conducted on a ball-on-disk apparatus. Normal load and sliding velocity were fixed at 30 N and 0.5 m/s, separately. After each tests, friction coefficients and wear rates were measured to evaluate friction and wear behavior. The results showed that the period of running-in process reduces with the increase of concentration and decrease of temperature. Increase of temperature could intensify wear behavior, and when concentration is larger than 20 vol%, wear rate of glycerol aqueous solution is one order less than that of pure water. Our findings could also guide for the use of glycerol aqueous solution as lubricant at different temperature. At 30 °C, the higher the concentration was, the smaller wear volume and total wear rate were. However, at 50 °C and 70 °C, total wear rates of disk were the largest when concentration is 5 vol%, a concentration of glycerol larger than 20 vol% must be added into water to reduce the wear rate. Wear regimes at different conditions were also given in this paper based on lubrication state number.  相似文献   

8.
In this paper, ZrO2 matrix high-temperature self-lubricating composites with addition of CuO as lubricant were prepared using a hot-pressing method by tailoring the content of CuO. The wear and friction behaviour of the composites were investigated from 700 °C to 1000 °C. The composites sliding against an Al2O3 ceramic ball exhibited excellent self-lubricating and anti-wear properties at high temperatures. The low friction and wear mechanisms were investigated in detail.  相似文献   

9.
《Ceramics International》2015,41(6):7434-7438
In the present work, the dry sliding behavior of a graphene/alumina composite material was studied against alumina in air. The tests were carried out in a reciprocating wear tester with an applied load of 20 N, a sliding speed of 0.06 m s−1 and a sliding distance of up to 10 km. Under the testing conditions, the graphene/ceramic composite showed approximately half the wear rate and a 10% lower friction coefficient than the monolithic alumina. It has been found that this behavior is related to the presence of graphene platelets adhered to the surface of friction that form a self-lubricating layer which provides enough lubrication in order to reduce both wear rate and friction coefficient, as compared to the alumina/alumina tribological system.  相似文献   

10.
In a recent work [Basu, B., Lee, J. H. and Kim, D. Y., Development of WC-ZrO2 nanocomposites by spark plasma sintering. J. Am. Ceram. Soc. 2004 87(2), 317–319], the processing of ultrahard WC–ZrO2 nanocomposites using spark plasma sintering is reported. In the present work, we investigate the processing and properties of WC–6 wt.% ZrO2 composites, densified by pressureless sintering route. The densification of the WC–ZrO2 composites was performed in the temperature range of 1500–1700 °C with varying time (1–3 h) in vacuum. The experimental results indicate that significantly high hardness of 22–23 GPa and moderate fracture toughness of ∼5 MPa m1/2 can be obtained with 2 mol% Y–stabilized ZrO2 sinter-additive, sintered at 1600 °C for 3 h. Furthermore, the friction and wear behavior of optimized WC–ZrO2 composite is investigated on a fretting mode I wear tester. The tribological results reveal that a moderate coefficient of friction in the range from 0.15 to 0.5 can be achieved with the optimised composite. A transition in friction and wear with load is noted. The dominant mechanisms of material removal are tribochemical wear and spalling of tribolayer.  相似文献   

11.
We investigated the mechanical and tribological properties of hydrogenated amorphous carbon (a-C:H) films on silicon substrates by nanoindentation, ball-on-disc tribotesting and scratch testing. The a-C:H films were deposited from an argon/methane gas mixture by bias-enhanced electron cyclotron resonance chemical vapour deposition (ECR-CVD). We found that substrate biasing directly influences the hardness, friction and wear resistance of the a-C:H films. An abrupt change in these properties is observed at a substrate bias of about ?100 V, which is attributed to the bias-controlled transition from polymer- to fullerenelike carbon coatings. Friction coefficients in the range of 0.28–0.39 and wear rates of about 7 × 10?5 mm3/Nm are derived for the polymeric films when tested against WC–Co balls at atmospheric test conditions. On the other hand, the fullerenelike hydrogenated carbon films produced at ion energies > 100 eV display a nanohardness of about 17 GPa, a strong reduction in the friction coefficient (~ 0.10) and a severe increase in the wear resistance (~ 1 × 10?7 mm3/Nm). For these films, relative humidity has a detrimental effect on friction but no correlation with the wear rate was found.  相似文献   

12.
《Ceramics International》2016,42(16):18283-18288
Short carbon fibre (Cf) reinforced silicon carbide (SiC) composites with 7.5 wt% alumina (Al2O3) as sintering additive were fabricated using spark plasma sintering (SPS). Three different Cf concentrations i.e. 10, 20 and 30 wt% were used to fabricate the composites. With increasing Cf content from 0 to 20 wt%, micro-hardness of the composites decreased ~28% and fracture toughness (KIC) increased significantly. The short Cf in the matrix facilitated enhanced fracture energy dissipation by the processes of crack deflection and bridging at Cf/SiC interface, fibre debonding and pullout. Thus, 20 wt% Cf/SiC composite showed >40% higher KIC over monolithic SiC (KIC≈4.51 MPa m0.5). Tribological tests in dry condition against Al2O3 ball showed slight improvement in wear resistance but significantly reduced friction coefficient (COF, μ) with increasing Cf content in the composites. The composite containing 30 wt% Cf showed the lowest COF.  相似文献   

13.
《Ceramics International》2016,42(8):9527-9537
Chopped carbon fiber preform reinforced carbon and SiC dual matrix composites (C/C–SiC) were fabricated by chemical vapor infiltration (CVI) combined with liquid silicon infiltration. The preform was fabricated by repeatedly overlapping chopped carbon fiber web and needle punching technique. A geometry model of the pore structure of the preform was built and reactant gas transportation during the CVI was calculated. The microstructure and properties of the C/C–SiC composites were investigated. The results indicated that the CVI time for densification of the preform decrease sharply, and the model showed the permeability of the preform decreased with the increase of its density. The C/C–SiC exhibited good mechanical characteristics, especially excellent compressive behavior, with the vertical and parallel compressive strength reached to 359(±40) MPa and 257(±35) MPa, respectively. The coefficient of friction (COF) decreased from 0.60 (at 8 m/s) with the increase of sliding velocity, and finally stabilized at ~0.35 under the velocity of 20 m/s and 24 m/s, and the variations of COF were not sensitive to the sliding distance. The wear rates were between 0.012 cm3/MJ and 0.024 cm3/MJ under different velocities. These results showed that the chopped carbon fiber preform reinforced C/C–SiC are promising candidates for high-performance and low-cost friction composites.  相似文献   

14.
《Ceramics International》2017,43(10):7816-7826
Gradient cermet composites possessing high surface hardness, flexural strength and interface bonding strength were fabricated using vacuum hot-pressing sintering. Ball-on-disk tests were performed to investigate the tribological properties of the gradient cermet composites against 440 C stainless steel, Al2O3 and Si3N4 balls at different sliding speed and load in comparison with traditional Ti(C,N) cermets. The tribological behavior was characterized in terms of friction coefficient and wear rate. The results showed that friction coefficient was significantly dependent on the sliding speed and load when sliding against Al2O3 and Si3N4. However, there was no obvious relation between them during sliding against 440 C stainless steel due to the formation of metal adhesive layer. Gradient cermet composites exhibited a higher friction coefficient but lower wear rate than traditional Ti(C,N) cermets. The main wear mechanism of gradient cermet composites was adhesion wear during sliding against 440 C stainless steel, while abrasion wear was the predominant mechanism during sliding against Al2O3 and Si3N4. It was expected that gradient cermet composites would be excellent candidates for cutting tool materials.  相似文献   

15.
Dry sliding wear tests on 5 wt.% copper oxide doped yttria stabilized zirconia polycrystals (CuO–TZP) composite have been performed against alumina, zirconia and silicon nitride countersurfaces at 600 °C. The influences of load and countersurface materials on the tribological performance of this composite have been studied. The friction and wear test results indicate a low coefficient of friction and specific wear rate for alumina and zirconia countersurfaces at F = 1 N load (maximum Hertzian pressure ~0.5 GPa). Examination of the worn surfaces using scanning electron microscope/energy dispersive spectroscopy confirmed the presence of copper rich layer at the edge of wear scar on the alumina and zirconia countersurfaces. However, Si3N4 countersurface sliding against CuO–TZP shows a relatively higher coefficient of friction and higher wear at 1 N load condition. These results suggest that the countersurface material significantly affect the behavior of the third body and self-lubricating ability of the composite.  相似文献   

16.
Cermets containing TiB2 and single or mixed metals were produced by conventional hot-pressing technique at 2100 °C for 1 h. Nickel, tantalum and their mixtures were used as alloying substances to enhance the density of TiB2 composites. The influence of metal addition on the microstructure and tribological properties were investigated. The addition of Ta powder greatly refined the microstructure of sintered samples. Similarly, the mixture of Ni and Ta metals hindered the grain growth of TiB2 particles during the hot-pressing while the samples were sintered up to 98% of theoretical density. The wear behaviour of the composites was assessed by ball on disk tests. The wear rate against alumina counterbody varied in the range of (5.9–21.2) × 10?6 mm3/Nm. The friction coefficient was not affected significantly by the alloying substances and only slightly increased from 0.58 for pure TiB2 to 0.67 for samples with Ta addition.  相似文献   

17.
Results of wear tests using an alumina ball sliding against 5 wt% copper oxide doped tetragonal zirconia polycrystalline (CuO-TZP) ceramics are reported as a function of temperature up to 700 °C. The specific wear rate and friction coefficient are strongly dependent on temperature. Below a critical temperature (T < 600 °C), CuO-TZP showed a high coefficient of friction as well as a high wear rate. This was ascribed to the formation of a rough surface, caused by brittle fracture and abrasive wear, based on observations by scanning electron microscopy (SEM), laser scanning microscopy (LSM) and X-ray photoelectron spectroscopy (XPS). However, above 600 °C a self-healing layer is formed at the interface and results in low friction and wear. The mechanism of layer formation and restoration is discussed and rationalized by onset of plastic deformation caused by a reduction reaction of CuO to Cu2O at high temperatures.  相似文献   

18.
Al2O3/SiC composites containing different volume fractions (3, 5, 10, 15, and 20 vol%) of SiC particles were produced by conventional mixing of alumina and silicon carbide powders, followed by hot pressing at 1740 °C for 1 h under the pressure of 30 MPa in the atmosphere of Ar. The influence of the volume fraction and size of SiC particles (two different powders with the mean size of SiC particles 40 and 200 nm were used), and final microstructure on mechanical properties and dry sliding wear behaviour in ball-on-disc arrangement were evaluated. The properties of the composites were related to a monolithic Al2O3 reference. Microstructure of the composites was significantly affected by the volume fraction of added SiC, with the mean size of alumina matrix grains decreasing with increasing content of SiC particles. The addition of SiC moderately improved the Vickers hardness. Fracture toughness was lower with respect to monolithic Al2O3, irrespective of the volume fraction and size of SiC particles. Al2O3/SiC nanocomposites conferred significant benefits in terms of wear behaviour under the conditions of mild dry sliding wear. Wear resistance of the alumina reference was poor, especially at the applied load of 50 N. The wear rates of composites markedly decreased with increasing volume fraction of SiC. Wear of the composites was also influenced by the material of counterparts, especially their hardness, with softer counterparts resulting in lower wear rates. All composites wore by a combination of grain pull-out with plastic deformation associated with grooving and small contribution of mechanical wear (micro-fracture). No influence of SiC particle size on wear rate or mechanism of wear was observed in the materials with identical volume fractions of SiC.  相似文献   

19.
Polytetrafluoroethylene (PTFE) is one of the most widely used solid lubricants but suffers from a high wear rate which limits its applications. Here we report four orders of magnitude reduction in the steady state wear rate of PTFE due to graphene additives. The wear rate of unfilled PTFE was measured to be ~0.4 × 10?3 mm3/N m which is reduced to ~10?7 mm3/N m by the incorporation of 10 wt% of graphene platelets. We also performed a head-to-head comparison of wear rate with graphene and micro-graphite fillers at the same weight fractions. In general, we find that graphene fillers gave 10–30 times lower wear rates than micro-graphite at the same loading fraction. Scanning electron microscopy analysis indicated noticeably smaller wear debris size in the case of graphene/PTFE composites indicating that graphene additives are highly effective in regulating debris formation in PTFE leading to reduced wear.  相似文献   

20.
《Ceramics International》2017,43(12):8982-8988
Damage of structural components of hypersonic vehicles by atmospheric particles demands thorough understanding on their wear behavior. In the present work, dense ZrB2-SiC (10, 20, and 30 vol%) composites are prepared by spark plasma sintering at 55 MPa in two stages: 1400 °C for 6 min followed by 1600 °C for 2 min. With increase in SiC content, microstructures of sintered composites reveal strongly bonded ZrB2 grains with SiC particles. A combination of maximum hardness of 23 GPa, elastic modulus of 398 GPa and fracture toughness of 5.4 MPa m1/2 are obtained for the composite containing 30 vol% SiC particles. It is found that cracks are bridged or deflected by SiC particles in the composites. When the composites are subjected to SiC particle erosion at 800 °C, a 14% decrease in erosion rate is obtained with increase in SiC content from 10 to 30 vol%. The formation of large extent of boro-silicate rich viscous surface on eroded surfaces is attributed to reduced fracture or removal of ZrB2 grains of the composites with increased SiC content.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号