首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
为了降低翘曲变形对壁厚塑件质量的影响,利用注塑仿真对塑件进行模拟,并结合正交试验的直观分析和方差分析方法对注塑工艺参数进行优化。结果表明,当模具温度70℃、熔体温度220℃、保压压力为注射压力的120%、冷却时间15s、保压时间30s及注射时间4s时,塑件翘曲量最小,熔体温度对塑件翘曲影响最大,模具温度对翘曲影响最小。  相似文献   

2.
借助CAE技术,对塑件的注塑成型进行了流动分析,潜在的成型缺陷在于塑件注塑成型翘曲变形大,通过调整注塑成型工艺参数,先对料温和模温进行优化,获得了较好的翘曲优化效果,再通过保压工艺的参数优化,将翘曲变形控制在2.052 mm以下,有效地保证了塑件的成型效果。优化获得的最终注塑成型工艺为:模温60℃,料温240℃,保压控制为40 MPa-15 s,25 MPa-5 s,冷却时间28 s。实践表明:经CAE分析后,该塑件的外观质量、尺寸、装配性能等均满足生产要求,具有较好的参考价值。  相似文献   

3.
针对塑件在成型过程中的多指标优化问题,利用注塑仿真软件对塑件进行仿真,预测其翘曲、体积收缩以及缩痕效果,并结合正交试验、极差分析和综合评分方法对注塑工艺参数进行优化。结果证明,当模具温度为50℃,熔体温度为200℃,保压压力为注射压力的120%,冷却时间为15 s,保压时间为20 s,注射时间为3 s时,塑件成型综合质量较好,注射时间对综合评分影响最大。  相似文献   

4.
根据基架的结构特点,运用Moldflow和UG等软件进行了注塑成型数值模拟,设计了基架注塑成型的浇注系统和冷却系统。为控制基架成型缺陷,设计了DOE正交试验,优化出注塑工艺参数:熔体温度260℃,模具温度70℃,注射时间1.2 s。设计出保压曲线为先恒压后线性递减二段保压。进行了单因素变动实验,研究了不同注塑工艺参数对塑件翘曲变形的影响程度。设计并生产出基架注塑模具,生产出合格的基架产品,验证了模拟结果的正确性。  相似文献   

5.
在Moldflow模拟分析的基础上,通过正交试验研究了熔体温度、模具温度、注射时间、保压压力、保压时闻和冷却时间等工艺参数对带金属嵌件的手机外壳注塑成型翘曲变形的影响,并优化了成型工艺.结果表明,保压时间和保压压力对翘曲变形的影响最大,最佳工艺组合为:熔体温度310℃,模具温度120℃,注射时间0.3 s,保压压力14...  相似文献   

6.
以正交试验设计为手段,借助有限元分析平台Moldflow,对某瓶盖注塑成型工艺进行数值模拟。通过分析塑件的工艺性,创建了产品的有限元模型,以最小翘曲变形量为试验指标,分析熔体温度、注射时间、模具温度、保压压力和保压时间对产品质量的影响规律。结果表明:当熔体温度为220℃、模具温度为100℃、注射时间为1.10 s、保压压力为100 MPa、保压时间为7.5 s时,所得产品的翘曲变形量最小,为0.369 9 mm,比初始模拟结果降低了34.77%,为实际注塑成型参数的设置提供了科学的理论指导。  相似文献   

7.
《塑料》2014,(1)
结合正交试验法和数值分析,以最大翘曲量为质量指标,研究了不同工艺条件下某Y型电连接器接触件注塑成型过程,通过对翘曲变形的极差分析,确定了熔体温度、模具温度、注射时间、保压压力、保压时间等工艺参数对翘曲变形的影响敏感性。利用BP(back propagation)人工神经网络,建立主要工艺参数和塑件翘曲变形量之间的数学模型,并进行了预测。结果表明:所建立的数学模型具有较高的预测精度,从而达到以较少的试验实现注塑成型工艺的优化与控制。  相似文献   

8.
对汽车轮眉的注塑成型过程进行了模拟分析。首先通过有限元软件ANSYS对轮眉进行载荷分析,得到轮眉的应力分布图和形变分布图。然后利用Moldfl ow软件模拟轮眉的注塑成型过程,设计了两种注塑成型方案,分别进行流变、冷却和翘曲模拟,分析轮眉的填充、保压、收缩和变形等情况,选择最优的注塑成型方案。再采用正交试验法分析影响轮眉翘曲变形的因素,寻找可使轮眉翘曲变形量最小的最优参数组合。结果表明:轮眉应力集中的位置在外表面拐角处;最优的注塑成型方案为单浇口浇注;各因素对翘曲变形的影响程度为保压时间保压压力熔体温度模具温度注射时间;最优工艺参数组合为熔体温度250℃、模具温度40℃、注射时间2.5 s、保压时间10 s、保压压力90 MPa。最优工艺条件下,轮眉的最大翘曲量可降至0.774 mm。  相似文献   

9.
薛茂远  梅益  唐方艳  肖展开  罗宁康 《塑料》2022,(1):56-61,66
以某电器扣盖壳体注塑成型工艺参数优化为例,对正交试验结果进行极差分析,得到各工艺参数对塑件翘曲变形量的影响程度顺序为保压时间>模具温度>注射时间>熔体温度>保压压力>冷却时间.利用遗传算法优化后的极限学习机网络模型(GA-ELM)预测该塑件的翘曲变形量,得到训练好的GA-ELM模型可以很好反映6个工艺参数与翘曲变形量之...  相似文献   

10.
卢松涛  王培安 《塑料科技》2020,48(2):105-111
以塑料盖作为研究对象,获得最优成型方案,预测塑件成型后的翘曲变形程度以提高塑件质量。初步提出两种注塑工艺方案加工塑料盖,使用Moldflow软件对两种方案注塑过程进行模拟对比分析,对产生翘曲缺陷的原因进行研究;利用五因素四水平的正交试验,以减小翘曲变形程度作为优化目标,优化工艺参数。模拟结果表明:方案二为最优方案,且翘曲变形主要是由收缩不均匀以及取向不均匀而造成的,翘曲变形程度最小的工艺参数组合为熔体温度250℃、模具温度60℃、保压时间12 s、冷却时间12 s、填充时间0.9 s,优化后比优化前翘曲变形程度降低9.4%左右,熔料熔接和材料性能也有所改善,塑料盖整体质量提高。实验可有效地缩短塑料盖的研发周期,降低生产成本,提高塑料盖的研发成功率。  相似文献   

11.
针对使用丙烯腈-丁二烯-苯乙烯共聚物/聚碳酸酯共混物制备的轿车车门内饰板在注塑成型过程中容易出现翘曲变形量过大的问题,采用正交试验方法,利用Autodesk Moldflow软件对内饰板进行注塑成型模拟,分析了塑化温度、模具温度、保压压力和保压时间等对内饰板翘曲变形的影响机理和规律,并确定了内饰板的最佳工艺参数。结果表明:注塑的最佳工艺参数是塑化温度为220 ℃,模具温度为80 ℃,保压压力为60 MPa,保压时间为35 s。采用最佳工艺参数进行注塑成型验证,发现车门内饰板的翘曲变形量显著下降,翘曲变形量平均值从14.56 mm降至8.02 mm。  相似文献   

12.
使用Moldflow软件模拟注塑成型过程,利用Taguchi法设计了L9(34)的正交试验,采用标准变量分析法(ANOVA)分析模具温度、熔体温度、保压压力和保压时间等工艺参数对制品翘曲变形的影响,预测了最佳注塑工艺参数,并对比了采用单点进浇与两点进浇条件下塑件的翘曲变形。结果表明:优化的工艺参数可以使塑件翘曲变形达到最小,采用两点进浇可以明显降低翘曲变形量。  相似文献   

13.
本文建立了基于神经网络和遗传算法并结合正交试验的薄壳件注塑成型工艺参数优化系统。正交试验法用来设计神经网络的训练样本,人工神经网络有效的创建了翘曲预测模型;遗传算法完成了对影响薄壳塑件翘曲变形的工艺参数(模具温度、注射温度、注射压力、保压时间、保压压力和冷却时间等)的优化,并计算出了它们的优化值,按该参数进行试验,效果良好,可以有效地减小薄壳塑件翘曲变形,其试验数值与计算数值基本相符,说明所提出的方法是可行的。  相似文献   

14.
建立了基于神经网络和遗传算法并结合正交试验的薄壳件注塑成型工艺参数优化系统。正交试验法用来设计神经网络的训练样本,人工神经网络有效的创建了翘曲预测模型;遗传算法完成了对影响薄壳塑件翘曲变形的工艺参数(模具温度、注射温度、注射压力、保压时间、保压压力和冷却时间等)的优化,并计算出了它们的优化值。按该参数进行试验,效果良好,可以有效地减小薄壳塑件翘曲变形,其试验数值与计算数值基本相符,说明所提出的方法是可行的。  相似文献   

15.
曲面薄板注塑成型翘曲数值模拟及优化   总被引:1,自引:0,他引:1  
利用Moldflow的MPI/Warp分析模块对曲面薄板塑件注射成型冷却过程进行数值模拟,预测其成型后的翘曲变形.通过正交试验法对影响塑件翘曲变形的工艺参数进行优化,确定影响该塑件翘曲变形的主要因素为材料收缩性能,其次为模具温度、注射保压冷却时间和熔体温度,并给出工艺优化方案.所获得结果可以用于指导和优化实际生产工艺.  相似文献   

16.
针对某汽车音响面板在注射成型过程中易发生翘曲变形的现象,在该塑件工艺分析和翘曲变形预测理论分析的基础上,利用UG和Moldflow构建了该塑件的三维模型和分析模型,设计了以翘曲变形值最小为实验目标和以充填时间A、熔体温度B、模具温度C、保压压力D和保压时间E为因子的正交实验方案,并运用Moldflow进行了注射成型工艺模拟实验。通过对实验结果进行极差和方差分析得出,对塑件的翘曲变形量影响程度从大到小依次为DBACE,保压压力占比65.76%,最优工艺参数为充填时间1.4 s、熔体温度250℃、模具温度60℃、保压压力64 MPa、保压时间11 s,其翘曲变形值为0.549 7 mm,比用推荐工艺参数的翘曲变形值减少了24.84%。实践表明,采用该优化工艺生产的塑件,翘曲变形小,无熔接痕,质量优良,易于装配。  相似文献   

17.
采用正交试验方法,利用Moldflow分析软件对汽车车门内饰板进行注塑成型模拟,分析了熔体温度、模具温度、注射时间、保压压力和保压时间等对注塑件翘曲变形的影响,找出了可以降低车门内饰板翘曲变形量的最佳工艺参数,并通过实际生产验证了所选工艺参数的正确性。当模具温度为35℃、保压时间为18 s、保压压力为60MPa、熔体温度为220℃、注射时间为7 s时,车门内饰板的翘曲变形量最小,Moldflow软件模拟出的最小值为8.33 mm;而采用优选工艺参数进行实际注塑得到的车门内饰板翘曲变形量为8.85 mm,与模拟结果基本吻合。  相似文献   

18.
以薄壁壳体为研究对象,基于Moldflow软件对薄壁特征翘曲变形进行正交试验仿真分析,对比实验方案及优化方案,并进行试验验证。结果表明:通过正交试验的优化分析,对翘曲变形显著性影响因素依次为保压压力,模具温度,熔体温度,保压时间,注射时间。优化工艺参数组合为模具温度80℃,熔体温度230℃,注射时间1 s,保压时间8 s,保压压力140%,基于优化数据的试制样件质量较高,对于相关注塑模具的设计制造具有指导和应用意义。  相似文献   

19.
《塑料科技》2019,(11):96-99
为解决汽车后视镜外壳的注塑翘曲缺陷问题,利用Moldflow对正交试验16组参数水平组合的成型过程进行模拟,得到各因素对翘曲变形量的影响程度,然后采用BP神经网络预测的方法得到最佳工艺参数组合为:模具温度70℃、熔体温度210℃、注射时间1.4 s、保压时间16 s及保压压力100 MPa。  相似文献   

20.
针对空调温控器下壳体这类注塑模具在注射成型时产生的过大变形缺陷,采用多因素田口试验法,再运用Moldflow软件对温控器下壳体进行分析、模拟,并观察可能发生的缺陷,进行优化设计。结果表明,最佳工艺参数组合模具温度为60℃、熔体温度为230℃、保压压力为60 MPa、保压时间为20s;且在最佳工艺参数下塑件的最大翘曲变形量得到显著改善,翘曲变形量减少了0.036mm。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号