共查询到20条相似文献,搜索用时 15 毫秒
1.
Ferric oxalate catalyst supported on phosphoric acid treated kaolin (ATKaol) was prepared and tested on the degradation of 4-nitrophenol (4-NP). The X-ray fluorescence (XRF) and Brunauer–Emmett–Teller (BET) characterization results showed drastic distortions in the raw kaolin (Kaol) crystalline structure and an increase in specific surface area (SSA) from 18.78 to 166.12 m2 g− 1 after acid treatment. The incorporation of Fe was confirmed with Fourier transformed infra-red spectroscopy (FTIR), X-ray diffraction (XRD) and energy dispersive X-ray (EDX) results. The degradation of 4-NP without UV was slower compared to when UV was used. There was no appreciable degradation in the absence of either catalyst or hydrogen peroxide (HP). The acid treated kaolinite catalyst (ATKaolCat) exhibits high catalytic activity without pH adjustment degrading 99% of 4-NP (100 ppm) in 4 min using 2.0 g ATKaolCat and 20% excess HP at 40 °C. The reusability study shows 9.4% decrease in efficiency after 5 rounds. The kinetic model developed showed good agreement with the experimental data. The model showed that ATKaolCat has higher selectivity for direct oxidation of 4-NP to mineralized products compared to oxidation via intermediates. These qualities make the catalyst promising in 4-NP degradation. 相似文献
2.
以钛基氧化物涂层材料(Ti/SnO_2-Sb_2O_5-IrO_2)为阳极,碳纳米管修饰的石墨材料(GE-CNT)为阴极构建电化学系统,促进芬顿反应过程中Fe~(3+)还原,从而减少芬顿氧化法中铁盐加量和铁泥产生量。研究表明:GE-CNT具有良好的还原Fe~(3+)性能,其优化的阴极还原电位约为0.30 V(vs.Ag/AgCl),该电位下反应120 min时Fe~(3+)还原率达到85.7%。以Fe~(3+)为催化剂降解4-硝基酚的结果,证实了电化学还原Fe~(3+)促进芬顿反应的有效性。对比考察了电促铁还原型芬顿氧化法与普通芬顿氧化法降解4-硝基酚的效果,优化的条件下两者可获得近似的降解效果,但前者优化的H_2O_2与Fe~(2+)摩尔比为40∶1,而后者为20∶1。因此,相对于普通芬顿氧化法,电促铁还原型芬顿氧化法可显著减少芬顿反应初始Fe~(2+)投加量。 相似文献
3.
The effects of phosphoric acid treatment on kaolinite (Kaol) as catalyst support were investigated in this study. The results showed that as the acid concentration was increased from 5 to 10 M, there was increment in the specific surface area from 18.78 in Kaol to 36.0 and 145.5 m2 g− 1 in 5 M acid treated Kaol supported catalyst (5 M-AT-KaolCat) and 10 M acid treated Kaol supported catalyst (10 M-AT-KaolCat), respectively. Characterization results showed that 10 M-AT-KaolCat has higher percentage of Fe than the 5 M-AT-KaolCat due to the effect of acid treatment which provided larger surface area for its anchoring. Consequently, degradation efficiency is comparably faster in 10 M-AT-KaolCat with about 99% of 40 ppm amoxicillin degraded in 8 min without pH adjustments while it takes 12 min using 5 M-AT-KaolCat. The degradation process showed initial enhanced degradation efficiency with increase in the catalyst loadings which later decreased due to the scavenging effect of excess catalyst loading on the reactive hydroxyl radical. The catalysts showed high resistance to leaching due to the presence of the ferrioxalate (FeOx) ligands and the effect of phosphoric acid modification which introduces monolayer of phosphate functional group on the catalyst support through which the FeOx ligands were properly anchored. 相似文献
4.
Heterogeneous UV-Fenton catalytic degradation of dyestuff in water with hydroxyl-Fe pillared bentonite 总被引:5,自引:0,他引:5
In recent years, much attention has been focused on developing heterogeneous catalyst for Fenton or photo-Fenton process to reuse the catalyst and avoid the possible pollution caused by the metal ions in the solution. Through cation exchange reaction, hydroxyl-Fe pillared bentonite (H-Fe-P-B) was successfully prepared as a solid catalyst for UV-Fenton process. Compared with raw bentonite, the content of iron, interlamellar distance and external surface area of H-Fe-P-B increased remarkably. Heterogeneous UV-Fenton catalytic degradation of azo-dye Acid Light Yellow G (ALYG) was investigated in aqueous using UVA (365 nm) light as irradiation source. The effects of H2O2 concentration, catalyst dosage, initial pH and temperature on degradation of ALYG were studied in detail. The results demonstrated that the H-Fe-P-B had high catalytic activity. In optimal operation conditions, more than 98% discoloration and 65% TOC removal of 50 mg/L ALYG could be achieved after 120 min treatment. The iron leaching rates of H-Fe-P-B were all below 0.6% in multiple runs in the degradation of ALYG, which indicated that the heterogeneous catalyst had long-term stability and activity. Another advantage of this catalyst was its strong surface acidity, which made the range of pH for heterogeneous UV-Fenton system extended from 3.0 to 9.0. The results indicated that the H-Fe-P-B was a promising catalyst for heterogeneous UV-Fenton system. 相似文献
5.
Natural clay-supported iron oxide was prepared by deposition method, and dried at 120 °C. It was found that under visible light in the presence of H2O2, this catalyst was highly active for degradation of cationic (malachite and fuchsin basic) and anionic dyes (orange II and X3B) in water at pH 6.5, as compared with bare iron oxide or the clay-supported iron oxide sintered at 350 °C. The excellent performance of the catalyst is correlated with its high sorption capacity toward both types of dyes, thus resulting in enhanced dye degradation via a photosensitization pathway. The catalyst was characterized by XRD, nitrogen adsorption, infrared, and UV–visible spectroscopy. 相似文献
6.
7.
Chen Wang Jun Li Giuseppe Mele Gao-Mai Yang Feng-Xing Zhang Leonardo Palmisano Giuseppe Vasapollo 《Applied catalysis. B, Environmental》2007,76(3-4):218-226
The effect of a series of carboxylic acids (C2–C8), as solvents for the preparation by flame spray pyrolysis of LaCoO3 catalyst for the flameless combustion of methane, has been investigated. Acetic acid showed to be unsatisfactory from several points of view: low phase purity of the catalyst, higher amount of unburnt carbonaceous residua, lower catalytic activity and low thermal stability. By increasing the carbon chain length of the solvent, the consequent increase of flame temperature led to an increase of crystal phase purity and of particle size and to a decrease of specific surface area of the catalyst. Catalytic activity showed only marginally affected by the last parameter, phase purity seeming more important. Thermal resistance showed directly related to flame temperature, i.e. to the combustion enthalpy of the solvent, but a relatively high amount of residual organic matter can negatively affect this property. 相似文献
8.
以偏钒酸铵和碳酸铋为原料,用NaOH调节体系pH,水热法合成钒酸铋(BiVO4)光催化剂。利用XRD和UV-Vis漫反射对样品的晶型结构和光吸收特性进行表征分析。以罗丹明B为目标降解物,卤素灯(λ>400 nm)为光源,探讨水热温度、水热时间对合成BiVO4催化剂的可见光催化活性影响。结果表明,在水热温度为200 ℃、水热时间为8 h的条件下合成的钒酸铋光解效率最高。实验还研究了罗丹明B水溶液pH、催化剂投加量对光催化罗丹明B降解率的影响。结果表明,在罗丹明B水溶液pH为3、初始质量浓度为10 mg/L、每60 mL溶液催化剂投加量为0.4 g时能达到较好的光催化效果,反应2 h后降解率可达97%。 相似文献
9.
The integration of highly monodispersed gold (Au) nanoparticles into polyvinyl alcohol (PVA) film is developed through a new seeded-growth pathway. Silver (Ag) nanoparticles are used during the synthesis as the reactive seeds to induce the reduction of Au under the UV-irradiation. The narrow surface plasmon resonance confirms the success of preparing gold nanoparticles with narrow size and shape distribution. The as-prepared PVA/Au nanocomposite films show sturdy cohesion between the PVA chains and/or between PVA network and gold nanoparticles. This has led to interest in their use as brand-new product in catalytic reduction of 4-nitrophenol with NaBH4. 相似文献
10.
Wenbing Li Dong Wan Guanghua Wang Kun Chen Qin Hu Lulu Lu 《Korean Journal of Chemical Engineering》2016,33(5):1557-1564
A novel catalyst, Fe3O4 nanoparticle decorated Al-Fe pillared bentonite (Fe3O4/Al-Fe-P-B), was prepared by in situ precipitation oxidization method. The catalyst was characterized by SEM, XRD and Raman spectroscopy. The Fe3O4 nanoparticles mainly exist on the surface or enter into the pore of bentonite, with better dispersing and less coaggregation. The catalytic activity of Fe3O4/Al-Fe-P-B was investigated in the degradation of Orange II (OII) by heterogeneous Fenton-like process. The effects of initial concentration of hydrogen peroxide, catalyst loading, temperature and initial pH on the degradation of OII were investigated. The Fe3O4/Al-Fe-P-B showed higher degradation efficiency of OII than bare Fe3O4 or Al-Fe-P-B in the degradation experiment. The enhanced catalytic activity of Fe3O4/Al-Fe-P-B in heterogeneous Fenton system was due to the synergistic effect between Al-Fe-P-B and Fe3O4. The novel catalyst can achieve solid-liquid separation easily by sample magnetic separation and has a good reusability and stability. 相似文献
11.
This work presents a novel composite photocatalyst, AgCl/Bi3O4Cl, which was prepared using an ion-exchange method. The synthesized composite was characterized by various techniques and its photocatalytic activity was investigated in RhB degradation under visible light irradiation. Results indicated that the introduction of AgCl into Bi3O4Cl promoted the specific surface area, light absorption performance and the separation efficiency of electron–hole pairs, which resulted in a high photocatalytic activity of the composite. The optimal AgCl/Bi3O4Cl sample showed a RhB degradation rate of 0.048 min− 1, which was 2.2 and 2.4 times higher than those of AgCl and Bi3O4Cl, respectively. 相似文献
12.
Ag3PO4 catalysts exhibited excellent photocatalytic performance in the degradation and the mineralization of bisphenol A, displaying considerably higher photocatalytic activity than N–TiO2 under visible light (λ > 420 nm). The trapping effects of different scavengers and spectrophotometric results proved that the oxidation of bisphenol A mainly occurred at photogenerated holes on the Ag3PO4 surface, along with a two-electron reduction of dissolved oxygen to H2O2. 相似文献
13.
Bhanudas Naik Subhenjit Hazra Vadakkethonippurathu S. Prasad Narendra N. Ghosh 《Catalysis communications》2011,12(12):1104-1108
Synthesis of uniform, spherical and rod shaped Ag nano particles within the uniform pore channels of mesoporous silica SBA-15 have been reported via a simple chemical method. High resolution transmission electron micrographs showed uniformly distributed spherical and rod shaped nano particles inside the pore channels of SBA-15. Synthesized Ag nano particle incorporated SBA-15 materials were acted as an efficient catalyst for the reduction of 4-nitrophenol to 4-aminophenol. 相似文献
14.
15.
以KCl、Bi(NO3)3和类石墨氮化碳(g-C3N4)为前体,采用水热法成功制备了BiOCl/g-C3N4异质结光催化剂,并进行可见光催化还原CO2,考察了催化剂的活性及稳定性,同时研究BiOCl:g-C3N4(摩尔比)、催化剂用量和光照强度对光催化还原CO2的影响。结果表明,在水蒸气的存在下,BiOCl/g-C3N4较纯BiOCl和g-C3N4具有更高的光催化还原CO2活性,在催化剂用量为0.1 g,光照强度为2.413×10-6 einstein·min-1·cm-2,BiOCl:g-C3N4摩尔比为1:1的异质结催化剂显示了最高的光催化还原CO2活性,且可见光催化剂在5次套用实验后其活性基本不变。基于X射线衍射(XRD)、扫描电子显微镜(SEM)、透射电子显微镜(TEM)、X射线光电子能谱(XPS)、比表面积测试(BET)和紫外-可见(UV-vis)吸收光谱表征,可以推断BiOCl和g-C3N4之间形成的p-n结能有效分离光生电子和空穴,是增强光催化剂活性的主要原因。 相似文献
16.
17.
采用原位生长法制备Ag3PO4/g-C3N4异质结催化剂,在可见光照射下,催化氧化降解废水中的药物大分子黄连素。通过X射线衍射(XRD)、扫描电镜(SEM)、X射线光电子能谱(XPS)、紫外-可见漫反射光谱(UV-vis DRS)分析催化剂的组成和结构,并测试了Ag3PO4/g-C3N4降解黄连素的光催化活性。结果表明:利用可见光照射,g-C3N4掺杂量为0.7 g时,Ag3PO4/g-C3N4对黄连素的光催化降解活性最好,可见光反应15 min降解率达到100%,重复4次实验后降解率降至73.2%,其具有较好的光稳定性。自由基捕获实验证明h+和·O2-在降解黄连素废水中起主要作用,结合UV-vis DRS分析可知,Ag3PO4/g-C3N4遵循Z型异质结机理。 相似文献
18.
In comparison with photocatalytic process, the catalytic degradation of organic dye pollutants in no need of light irradiation is highly interesting from the energy-saving point of view. In this paper, we developed a new CeGeO4 catalyst that can satisfy the energy-saving requirements in this regard. During the synthesis of CeGeO4, the influence of synthetic medium pH, the kind of precursor, etc., on the formation of crystalline CeGeO4 was investigated in detail. Importantly, the CeGeO4 catalyst exhibited significantly higher performance than that of CeGeO4/CeO2 or CeO2 in degradation of rhodamine B (RhB) or methylene blue (MB) in the dark at room temperature. 相似文献
19.
《Ceramics International》2022,48(17):24677-24686
Although g-C3N4 (CN) materials have been extensively explored for the photocatalytic degradation of organic pollutants, their weak response to visible light and fast recombination of photoexcited electron-hole pairs restrain their practical applications. Herein, we deeply mediated the CN's energy-band structure, morphology, and surface properties by non-metal (P) and metal (Mo) co-doping based on the thermal treatment of a phosphomolybdic acid hydrate and dicyandiamide mixture in a straightforward one-step manner. Meanwhile, cyano groups and nitrogen vacancies were generated as a result of the co-doping, and the resulting P, Mo co-doped CN (PM-CN) exhibited thinner layers, smaller sizes, and superior visible-light harvesting capacity and charge separation efficiency. Consequently, highly active PM-CN was obtained for photocatalytic tetracyclines (TC) degradation, and the rate was calculated to be 0.01 min?1, 3.3 times greater than that of the pure CN, outstripping the single P- and Mo-doped counterparts. A free radical scavenging test demonstrated that the reactive species ?O2? and h+ were critical in TC degradation. The present work is expected to shed light on co-doping CN with non-metal and metal elements to obtain high-performance, visible-light-responsive photocatalysts for practical environmental remediation. 相似文献
20.
Giovanni Palmisano Vittorio Loddo Hossam Hamed El Nazer Sedat Yurdakal Vincenzo Augugliaro Rosaria Ciriminna Mario Pagliaro 《Chemical engineering journal (Lausanne, Switzerland : 1996)》2009,155(1-2):339-346
Amorphous TiO2, prepared at room temperature through a sol–gel method implementing hydrolysis of TiCl4, has been supported on graphite rods and then annealed at 673 K. In this way graphite was completely covered by a porous anatase TiO2 layer, with an external thickness of about 1 μm, with graphite pores completely filled by the semiconductor particles. The obtained electrode was structurally characterized by SEM microscopy coupled to EDAX mapping and by Raman spectroscopy. A Pyrex annular reactor was designed in order to test the prepared electrodes for the photoelectrocatalytic degradation of 4-nitrophenol, a target pollutant dissolved in aqueous conductive solution. The continuous reactor worked in total recirculation mode and the degradation runs were carried out by applying near UV-light, bias or both energy sources. The influence of flow rate, initial 4-nitrophenol concentration and applied potential on the degradation rate was studied. 相似文献