首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
《Fuel》2006,85(12-13):1921-1928
Pyrolysis experiments of rapeseed (Brassica napus L.) were performed in a free fall reactor at atmospheric pressure under nitrogen atmosphere. The effects of final pyrolysis temperature, particle size and sweep gas flow rate on the yields of products were investigated. The temperature of pyrolysis, particle size and sweep gas flow rate were varied in the ranges of 400—700 °C, −0.224 to 1.8 mm and 50–400 cm3 min−1, respectively. The elemental analysis and calorific value of the bio-oil were determined, and compared with diesel fuel and then the chemical composition of the bio-oil was investigated using chromatographic and spectroscopic techniques (1H NMR, IR, column chromatography and GC/MS). The chemical characterization has shown that the bio-oil obtained from rapeseed could be use as diesel fuel and chemical feeedstock.  相似文献   

2.
《Fuel》2006,85(12-13):1851-1859
Pyrolysis of Euphorbia rigida and sesame stalk biomass samples with two selected commercial catalyst, namely DHC-32 and HC-K 1.3Q, have been conducted in a fixed-bed reactor. The effect of different catalysts and their ratio (5, 10 and 20% w/w) and pyrolysis temperature (500 and 750 °C) on the pyrolysis product yields were investigated and the obtained results were compared with similar experiments without catalyst. Bio-oil yield was increased comparing with non-catalytic experiments, at final pyrolysis temperature of 500 °C for both biomass samples and catalysts. In the catalytic experiments; when the temperature reached to 750 °C, although bio-oil product yield was reduced, the gas product yield was increased comparing with non-catalytic experiments.The pyrolysis oils were examined using spectroscopic and chromatographic analyses and then fractioned by column chromatography. Although the aliphatic and aromatic fractions were decreased and polar fraction was increased with catalytic pyrolysis of E. rigida; an opposite trend was observed in the sesame stalk pyrolysis oil, comparing with non-catalytic results.Obtained results were compared with petroleum fractions and determined the possibility of being a potential source of renewable fuels.  相似文献   

3.
Disposal of poultry litter such as chicken litter and turkey litter is becoming a major problem in the USA poultry industry because of environmental pressures and health concerns. Poultry litters form wood chips, chicken litter (flock 1, flock 2 and broiler) and turkey litter were converted into bio-oil, gas and char in a fluidized bed reactor at the temperature ranges of 450–550 °C. The bio-oil yield of poultry litter was relatively low (15–30 wt%) compared to wood derived bio-oil (34–42 wt%). The gas yield was increased from 32 to 61 wt% with increasing reaction temperature, and char yield was between 22 and 45 wt% depending on age and reaction conditions. The higher heating value (HHV) of the poultry litter bio-oil were between 26 and 29 MJ/kg, whereas that of the bedding material (wood chips) was 24 MJ/kg. The dynamic viscosities of bio-oil were varied from 0.01 to 27.9 Pa s at 60 °C, and those of values were decreased with increasing shear rate.  相似文献   

4.
In this work, rice husk, an agricultural waste in Korea, was pyrolyzed under different reaction conditions (temperature, flow rate, feed rate, and fluidizing medium) in a fluidized bed with the influence of reaction conditions upon characteristics of the bio-oil studied. The optimal pyrolysis temperature for bio-oil production was found to be between 400 and 450 °C. Higher flow rates and feeding rates were more effective for its production. The use of the product gas as the fluidizing medium led to the highest bio-oil yield. With the exception of temperature, no single operation variable largely affected the physicochemical properties of the bio-oil.  相似文献   

5.
Glycyrrhiza glabra was liquefied by ethanol and acetone in an autoclave under high pressure using potassium hydroxide or sodium carbonate as the catalyst, as well as without catalyst at various temperatures (250, 270 and 290 °C) for producing bio-oil. The experimental results show that the yield of the main liquefaction product (bio-oil) was influenced significantly by liquefaction parameters such as solvent type, and catalyst type and temperature. The results showed that the maximum bio-oil yield was obtained in acetone (79%) at 290 °C without catalyst. The products of liquefaction (bio-oil) were analysed and characterized using various methods including elemental analysis, Fourier transform infrared spectroscopy and gas chromatography–mass spectrometry. GC–MS identified 131 and 147 different compounds in the bio-oils obtained at 270 and 290 °C, respectively.  相似文献   

6.
《Ceramics International》2015,41(6):7359-7365
A soluble polymer precursor for ultra-fine zirconium carbide (ZrC) was successfully synthesized using phenol and zirconium tetrachloride as carbon and zirconium sources, respectively. The pyrolysis behavior and structural evolution of the precursor were studied by Fourier transform infrared spectra (FTIR), differential scanning calorimetry, and thermal gravimetric analysis (DSC–TG). The microstructure and composition of the pyrolysis products were characterized by X-ray diffraction (XRD), laser Raman spectroscopy, scanning electron microscope (SEM) and element analysis. The results indicate that the obtained precursor for the ultra-fine ZrC could be a Zr–O–C chain polymer with phenol and acetylacetone as ligands. The pyrolysis products of the precursor mainly consist of intimately mixed amorphous carbon and tetragonal ZrO2 (t-ZrO2) in the temperature range of 300–1200 °C. When the pyrolysis temperature rises up to 1300 °C, the precursor starts to transform gradually into ZrC, accompanied by the formation of monoclinic ZrO2 (m-ZrO2). The carbothermal reduction reaction between ZrO2 and carbon has been substantially completed at a relatively low temperature (1500 °C). The obtained ultra-fine ZrC powders exhibit as well-distributed near-spherical grains with sizes ranging from 50 to 100 nm. The amount of oxygen in the ZrC powders could be further reduced by increasing the pyrolysis temperature from 1500 to 1600 °C but unfortunately the obvious agglomeration of the ZrC grains will be induced.  相似文献   

7.
《Fuel》2005,84(14-15):1874-1878
The volatilization behavior of chlorine in three Chinese bituminous coals during pyrolysis and CO2-gasification in a fluidized bed reactor was investigated. The modes of occurrence of chlorine in raw coals and their char samples were determined using sequential chemical extraction method. The Cl volatility increases with increasing temperature. Below 600 °C the Cl volatility is different, depending on the coal type and the occurrence mode of Cl. Above 700 °C, the Cl volatilities for the three coals tested are all higher than 80%. About 41% of the chlorine in Lu-an coal and 73% of that in Yanzhou coal are organic forms, and most of them are covalently-bonded organic chlorine, which shows high volatile behavior even at low pyrolysis temperatures (below 500 °C), while the inorganic forms of chlorine in two coal samples are hardly volatilized even at low pyrolysis temperatures (below 400 °C). The restraining efficiency of addition of CaO on chlorine volatility is greatly dependent on pyrolysis temperature. The optimal restraining efficiency can be obtained at temperature range from 450 to 650 °C during pyrolysis of Lu-an coal. The volatile behavior of Cl is mainly dependent on temperature. Above 700 °C high volatility of Cl is obtained in both N2 and CO2 atmospheres.  相似文献   

8.
Waste pyrolysis is widely investigated, but less information is available about their co-pyrolysis. The present paper discloses the waste pyrolysis and co-pyrolysis in batch reactor at 400 °C, 450 °C and 500 °C. The effect of the raw materials and temperature to the product was investigated. Product yield was increased and the quality (composition, contaminants, etc.) improved by co-pyrolysis. Gas and pyrolysis oil yields increased as function of temperature. Higher ratio of organic waste/petroleum based plastic waste resulted in lower yields of volatile hydrocarbons. Concentrations of oxygen containing products and contaminants are significantly changed with temperature or adding of HDPE into raw materials.  相似文献   

9.
NiFe bimetallic catalyst shows an excellent activity and selectivity for the hydrodeoxygenation (HDO) of three typical model compounds of bio-oil. The conversion of furfuryl alcohol, benzene alcohol and ethyl oenanthate is 100, 95.48 and 97.89% at 400 °C and the yield to 2-methylfuran, toluene and heptane is 98.85, 93.49 and 96.11% at 0.1 ml/min flow speed and atmospheric pressure. It indicates that the major reaction pathway is the cleavage of C–O rather than C–C. After the catalytic HDO of bio-oil over NiFe/Al2O3 catalyst, the heating value changes from 37.8 to 43.9 MJ/kg, the pH changes from 6.65 to 7.50.  相似文献   

10.
We demonstrate the possibility to fabricate SiC monofilaments with large diameters of 100 μm by a polymer route using a dry-spinning process. The properties of the spinning solution and the parameters of the spinning process were optimized to achieve a circular cross section of the spun filaments despite their large diameter. The evolution of the diameter and the mechanical properties of the filaments with pyrolysis temperature were studied. Filament shrinkage started above 400 °C. A radial shrinkage of about 25% was measured for pyrolysis temperatures of 1200 °C. The mechanical properties significantly start to increase at pyrolysis temperatures above 600 °C. At a diameter of 100 μm the filaments show a tensile strength of 620 MPa and a tensile modulus of 138 GPa after pyrolysis at 1200 °C. A decrease in the filament diameter leads to an improvement of the mechanical properties. We demonstrate the fabrication of these SiC monofilaments on spools.  相似文献   

11.
Hydrothermal liquefaction of lignocellulosic biomass (wheat straw) into bio-oil has been investigated under subcritical conditions (temperature up to 350 °C, pressure up to 200 bar) in water and water–alcohol mixtures using ethanol and isopropanol in a continuously operated tubular reactor. The effect of different reaction parameters such as temperature, pressure and water–alcohol ratio on the biomass conversion, cracking products yield and the higher heating value (HHV) of the received bio-oil was studied. The water–ethanol mixture was found to be a very reactive medium showing a complete biomass conversion and >30 wt% yield of high caloric oil (HCO). A maximum HHV of 28 MJ/kg for HCO was achieved. In addition, Ru (5 wt%) on H-Beta support was used as catalyst in a run with hydrogen in the feed showing deeper deoxygenation of reaction intermediates and highest HHV of the product oil (30 MJ/kg). This work demonstrated the usability of water–ethanol mixtures for an effective depolymerization of lignocellulosic biomass to bio-oils under subcritical reaction conditions with more than doubled HHV compared to the feedstock, in particular using a catalyst and the presence of hydrogen for further deoxygenation.  相似文献   

12.
Homogeneous silicon oxycarbide (SiOC) ceramic powders were prepared by pyrolysis of cross-linked polysiloxane at different temperatures (1250–1500 °C) under vacuum. The effect of pyrolysis temperature on the pore structure evolution was investigated by means of N2 adsorption, SEM, XRD, IR and element analysis (EA). Studies showed that predominate mesoporous ceramics with the average pore size in the range of 2–13 nm were obtained after pyrolysis in this temperature range. The pore structure transformation is strongly correlated with the thermolytic decomposition process of the used precursor, such as phase separation and carbothermal reduction. At relatively lower temperature (1250–1350 °C), the ceramics had a relative small specific surface areas (35 m2/g) owing to the low degree of carbothermal reduction. However, as the carbothermal degree had an obvious augment at relative higher temperature (1400–1450 °C), the specific surface areas and total pore volume increased and reached to the maximum of 66 m2/g and 0.214 cm3/g, respectively, and subsequently decreased rapidly after 1500 °C for the reason of partial sintering of the nano-sized SiC derived from polysiloxane.  相似文献   

13.
《Ceramics International》2016,42(9):10655-10663
Nanosized zirconium carbide (ZrC) was synthesized successfully by a novel hydrothermal precursor conversion method using chelation of polydentate glucose as the carbon source. During the pyrolysis, the core-matrix structure of intimate nanosized ZrO2 and amorphous carbon mixture forms, resulting in short diffusion path and limit of grain growth. ZrC first appears at a much lower temperature of 1200 °C and completes conversion at 1400 °C in comparison with that of precursor without hydrothermal treatment. By raising the heating temperature to 1600 °C, oxygen content could be reduced (0.55 wt%) with a low residual carbon content (2.3 wt%), and the average size of the spherical crystallite increases from 100 nm to 200 nm. Based on above ZrC powders, the additive-free ceramic with 99.4% relative density by spark plasma sintering (SPS) at a low temperature of 1700 °C has been achieved.  相似文献   

14.
As a polymer material, UPR anchoring material has pyrolysis at high temperature, which directly affect its mechanical stability. Using micro-CT scans and 3D image reconstruction to analysis pyrolysis characteristics and the pore structure evolution of UPR anchoring material at high temperatures, and the results showed that the thermal decomposition cause obvious changes in internal microstructure at high temperatures; the average gray attenuated 20.7%, pore groups number increased 47.5% and pore group size increased 201.5% between 350 °C and 500 °C; organic cemented body corresponding to attenuation coefficient ranges from 0.0163 to 0.0373, the inner pore increased significantly after organic pyrolysis, and connected with each other to form larger pores group; the pyrolysis critical temperature is 350 °C, pyrolysis affects significantly to the internal structure and the density of the material. Mechanical properties decayed significantly at high temperature (400 °C), compressive strength decreased by 95% and pull-out strength decreased by 68.3%.  相似文献   

15.
Ferula orientalis L. stalks were liquefied in an autoclave in supercritical organic solvents (methanol, ethanol, 2-propanol, acetone and 2-butanol) with (NaOH, Na2CO3, ZnCl2) and without catalyst at five different temperatures ranging from 240 °C to 320 °C. The amounts of solid (unconverted raw material), liquid (bio-oil) and gas produced, as well as the composition of the resulting liquid phase, were determined. The effects of various parameters such as temperature, solvent, catalyst and ratio of catalyst on product yields were investigated. The results showed that conversion highly depends on the temperature and catalyst. The highest bio-oil yield (53.97%) was obtained using acetone with 10% zinc chloride at 300 °C. The liquid products were extracted with benzene and diethyl ether. Some of selected liquid products (bio-oils) were analyzed by elemental, FT-IR and GC–MS. 126 different compounds were identified by GC–MS in the liquid products obtained in ethanol at 300 °C.  相似文献   

16.
《Fuel》2005,84(12-13):1494-1502
Al-MCM-41 type mesoporous catalysts were used for converting the pyrolysis vapours of spruce wood in order to obtain better bio-oil properties. Four Al-MCM-41 type catalysts with a Si/Al ratio of 20 were tested. The catalytic properties of Al-MCM-41 catalyst were modified by pore enlargement that allows the processing of larger molecules and by introduction of Cu cations into the structure.Spruce wood pyrolysis at 500 °C was performed and the products were analysed with the help of on-line pyrolysis-gas chromatography/mass spectrometry (Py-GC/MS). In addition, thermogravimetry/mass spectrometry (TG/MS) experiments were applied for monitoring the product evolution under slow heating conditions (20 °C/min) from 50 to 800 °C.Levoglucosan is completely eliminated, while acetic acid, furfural and furanes become quite important among cellulose pyrolysis products over the unmodified Al-MCM-41 catalyst. The dominance of phenolic compounds of higher molecular mass is strongly cut back among the lignin products. Both the increase of the yield of acetic acid and furan and the decrease of large methoxyphenols are repressed to some extent over catalysts with enlarged pores. The Cu modified catalyst performed similarly to the catalyst with enlarged pore size in converting the pyrolysis vapours of wood, although its pore size was similar to the unmodified Al-MCM-41.  相似文献   

17.
Nano-sized Ba0.7Sr0.3TiO3 powders are prepared by post-treatment of the precursor powders with hollow and thin wall structure at temperatures between 900 and 1100 °C. Ethylenediaminetetraacetic acid and citric acid improve the hollowness of the precursor powders prepared by spray pyrolysis. The mean sizes of the powders post-treated at temperatures of 900, 1000 and 1100 °C are 42, 51 and 66 nm, respectively. The densities of the Ba0.7Sr0.3TiO3 pellets obtained from the powders post-treated at 900, 1000 and 1100 °C are each 5.36, 5.55 and 5.38 g cm?3 at a sintering temperature of 1300 °C. The pellet obtained from the powders post-treated at 1000 °C has higher maximum dielectric constant than those obtained from the powders post-treated at 900 and 1100 °C.  相似文献   

18.
Using non-aqueous Pechini method, Pb(Zr0.95Ti0.05)O3 powders were prepared at low temperature by one-step pyrolysis process. The polymeric gels and powders were characterized using a range of techniques, such as DTG, XRD, SEM, Raman spectroscopy, and laser particle size distribution. The perovskite phase was formed at about 350–400 °C and some oxocarbonate impurities can be detected in all samples after calcining at 400–850 °C by one-step pyrolysis process. Phase pure and porous Pb(Zr0.95Ti0.05)O3 ceramics were obtained without pore formers from the powders by one-step pyrolysis process at 500 °C for 4 h. The relative densities were 87%, 91% and 94% for the ceramics sintered at 1100, 1150 and 1200 °C for 2 h, respectively. The porous ceramics sintered at 1200 °C for 2 h have homogeneously dispersed pores and fine-grain structures with an individual grain size of 0.7–2 μm.  相似文献   

19.
Mesoporous silicon oxycarbide ceramics without free carbon were prepared by pyrolysis of cross-linked polysiloxane at different temperatures (1300–1450 °C) followed by post treatments. The post treatments comprised two steps (HF etching and oxidation at 650 °C in air). The sample pyrolyzed at 1300 °C after post treatments exhibits the largest specific surface area (SSA) reaching up to 204 m2/g and the biggest total pore volume (0.58 cm3/g) with an average pore size of 11.4 nm. Increasing pyrolysis temperature will lead a quick decline of SSA and total pore volume. The thermal stability of pore structure of the sample pyrolyzed at 1300 °C with post treatments was investigated in air. The SSA and total pore volume almost keeps the same up to 750 °C, and subsequently decreases with a high speed. The most possible reason is the pores are severely closed by viscous flow of SiO2 produced from SiC nanocrystallites.  相似文献   

20.
Samaria-doped ceria (SDC) nanoparticles were prepared by spray pyrolysis. The means sizes of the samaria-doped ceria nanoparticles were controlled from 21 to 150 nm by changing the calcination temperatures between 700 and 1200 °C. The pellets formed from the SDC particles calcined at temperatures between 700 and 1000 °C had similar grain sizes between 0.75 and 0.82 μm. However, pellet formed from the SDC particles calcined at a temperature of 1200 °C had large grain size of 1.22 μm. The pellet formed from the SDC particles calcined at a temperature of 1000 °C had slightly smaller resistance of grain-boundary than those of the pellets formed from the SDC particles calcined at temperatures between 700 and 900 °C. However, the pellet formed from the SDC particles calcined at a temperature of 1200 °C had low resistance of grain-boundary. The pellet formed from the SDC particles calcined at a temperature of 1200 °C had conductivity of 44.65 × 10?3 S cm?1 at a measuring temperature of 700 °C that more twice than those of the pellets formed from the SDC calcined below 1000 °C.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号