首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
Mn-based mixed-oxide (MnOx) catalysts were modified with Fe, Ce, and Ce + Fe, and its catalytic oxidation activity was tested by using 1,2-dichlorobenzene (o-DCB) as models of chlorinated volatile organic compounds. Addition of Ce or Ce + Fe into MnOx promoted their crystals to turn into amorphous powder, enhanced their specific surface area and changed their redox property. The catalytic activity of MnOx improved remarkably by adding Ce or Ce + Fe indicating Ce plays an important role. Both Mn-Ce and Mn-Ce-Fe catalysts exhibited good stability for catalytic oxidation of o-DCB, indicating that the introduction of promoter is an important method to improve the catalytic performance.  相似文献   

2.
Pd–Fe–Ox catalysts for low temperature CO oxidation were supported on SBA-15, CeO2 nano-particles with rich (111) facets and CeO2 nano-rod with rich (200) facets, and characterized by X-ray diffraction, low-temperature nitrogen adsorption, transmission electron microscopy and temperature-programmed reduction. The results showed that when CeO2 nano-rod was used as a support, Pd–Fe–Ox catalyst exhibits higher activity (T100 = 10 °C), resulting from the rich (200) facets of CeO2 nano-rod, which leads to a formation of large numbers of the oxygen vacancies on the surface of Pd–Fe–Ox catalysts.  相似文献   

3.
《Catalysis Today》2005,99(1-2):217-226
Results obtained by adding gaseous promoters (CO2, N2O and H2) into the reaction feed are presented for two different reactions: (i) oxidative dehydrogenation of propane (ODP), and (ii) catalytic combustion of methane (CCM). The ODP is performed on a mixture of NiMoO4 and CeO2, by adding 3 vol.% CO2 into the feed, and on a NiMoO4/[Si,V]-MCM-41 mesoporous catalyst, in the presence of 1 or 5 vol.% N2O in the feed. The CCM is carried out (i) on Pd(2 wt.%)/CexZr1−xO2 and Pd(2 wt.%)/γ-Al2O3 catalysts, on pure CeO2 and on a mixture of Pd(2 wt.%)/γ-Al2O3 and CeO2 powders, by adding 3 vol.% CO2 into the feed, and (ii) on a Pd(2 wt.%)/γ-Al2O3 catalyst, in the presence of various amounts of H2 in the feed. It is shown, through all these various examples, that the activity and/or the selectivity of catalysts can be improved by tuning, in a very controlled manner, the oxidation state of active sites via the use of these gaseous promoters.  相似文献   

4.
Etherification of n-butanol to di-n-butyl ether was carried out over H3PMo12  xWxO40 (x = 0, 3, 6, 9, 12) Keggin and H6P2Mo18  xWxO62 (x = 0, 3, 9, 15, 18) Wells–Dawson heteropolyacid (HPA) catalysts. Acid strength of H3PMo12  xWxO40 Keggin and H6P2Mo18  xWxO62 Wells–Dawson HPA catalysts was determined by NH3-TPD (temperature-programmed desorption) measurements. The correlations between desorption peak temperature (acid strength) of the HPA catalysts and catalytic activity revealed that conversion of n-butanol and yield for di-n-butyl ether increased with increasing acid strength of the catalysts, regardless of the identity of HPA catalysts (without HPA structural sensitivity).  相似文献   

5.
Pd(5) impregnated metal/silica-pillared H-keyaites (M-SPK, M = Ti, Zr) catalysts were prepared for the partial oxidation of methane (POM) to hydrogen. The catalysts were characterized by BET, TEM, SAXS and XPS. In addition, the catalytic yield of the POM to hydrogen over Pd(5) impregnated on M-SPK and Pd(5)/Al2O3, commercial catalyst were investigated in a fixed bed flow reactor under (Ed atmosphere. BET-specific surface areas, average pore sizes and nitrogen adsorption/desorption isotherms were 284.3–396.2 m2/g, 3.3–3.8 nm and type B on type IV isotherms for Pd(5)/M-SPK(M = Ti, Zr), and 90.5 m2/g, 8.3 nm and type E on type IV isotherm for Pd(5)/Al2O3, respectively. TEM images of SPK and Pd(5)/SPK showed the formation of mesoporous layer compounds, as well as the homogenous dispersion of Pd particles on the surface. SAXS peaks at 0.13 Å for fresh Pd(5)/SPK were maintained without being broken, even after about 53 h in stream at 973 K. XPS showed the existence of two oxidation states for Pd (Pd0 and Pd2+) on the surface of the catalyst, depending on the carrier, whereas the presence of Ti and Zr in SPK induced a change in the oxidation state (O2−, O) of the catalyst. The yield values of the POM to hydrogen over Pd(5)/M-SPK(M = Ti, Zr) were 64.9% and 55.8%, respectively, at 973K, CH4/O2 = 2, GHSV = 8.4 × 104 ml/gcat h, and these values were kept constant even after 70 h in stream. These results confirm that Ti and Zr in SPK frame induced oxidation states of Pd, and that the yield of Pd(5)/M-SPK positively regulates the POM to hydrogen.  相似文献   

6.
Combustive oxidation of volatile organic compounds (VOCs), such as propyl alcohol, toluene and cyclohexane, were studied. The combustion was catalyzed by nanoparticles of La1−xSrxCoO3 (x = 0, 0.2) perovskites prepared by a co-precipitation method. The results showed high activities of the perovskite catalysts. Compared to LaCoO3, in particular, La0.8Sr0.2CoO3 was much higher in catalytic ability. The total oxidation of VOCs followed the increasing order: cyclohexane < toluene < propyl alcohol. The T99% of cyclohexane was 40 °C lower than that of toluene, which appeared to be determined by the bond strengths of the weakest C–H and C–C bonds. The 100-h stability experiments showed that La1−xSrxCoO3 (x = 0, 0.2) perovskite was highly stable.  相似文献   

7.
An effective approach of simultaneous coordinating etching and Pd nano coating technology is employed to prepare hollow Pd/CeO2 nanocubes as catalysts for the low-temperature oxidation of CO. The activities of Pd/CeO2 catalysts are higher than that of Pd supported on Al2O3, and the activity of 1 wt.% Pd/CeO2 can be enhanced obviously and its T90 (which denotes the temperatures at which a 90% conversion of the initial reactants is attained) is as low as − 5.6 °C. The intrinsic hollow nature as well as high porosity of the unique nanostructures of CeO2 support contributes greatly to the formation of large numbers of surface oxygen vacancies on the as-prepared Pd/CeO2 catalysts, and therefore it exhibits outstanding catalytic activity. This strategy method is simple, of low cost, which may shed light on a new avenue for fast synthesis of hollow cube-like nano functional materials for catalyst, drug delivery, energy storage and other new applications.  相似文献   

8.
Noble-metal promoters have been added to catalysts for reactions such as steam-methane reforming, but have rarely been applied to systems that produce H2 from larger, biomass-derived molecules, such as polyols or cellulose. We have previously found that nickel catalysts supported on mesocellular-foam-(MCF)-type silica catalyze H2 formation during cellulose pyrolysis, and sought to increase their activity. Thus, palladium-promoted nickel catalysts supported on MCF were prepared, and their activities were tested in cellulose pyrolysis (RT  800 °C, 40 °C/min) under dry argon. A thermogravimetric analyzer–mass spectrometer (TG–MS) was used to semi-quantitatively monitor the gases, especially H2, that were released during pyrolysis over catalysts with and without Pd promoters. Although the Pd promoters had little impact on the fraction of H2 in the product gas, adding ≥ 0.4 wt.% Pd enhanced the H2 yield from cellulose pyrolysis by increasing the total gas yield from the reaction. Thus the promoter improved H2 yield by enhancing the tar-cracking activity of the catalyst. A 5%Ni/MCF catalyst that was doped with 0.7 wt.% Pd yielded 85 cm3 H2/g cellulose, which was 15% more H2 than was obtained when the catalyst was 5%Ni/MCF.  相似文献   

9.
Two methods for the preparation of Pd/Ce0.5Sn0.5O2 catalysts have been used: solution combustion (SC) of Pd, Ce and Sn precursor mixtures, and incipient wetness impregnation by [Pd(NO3)2(H2O)2] solution of Ce0.5Sn0.5O2  δ support, obtained by the SC technique (SC + IWI). The formation of metallic palladium was observed in addition to ionic palladium in a Pdx(Ce0.5Sn0.5)1  xO2  x  δ solid solution due to high-temperature Pd precursor decomposition during the SC process. IWI of Ce0.5Sn0.5O2  δ support has been demonstrated to lead to a uniform solid solution of Pd2 + ions in the Ce0.5Sn0.5O2  δ matrix at 1% Pd content that resulted in high catalyst activity towards CO oxidation. The increase of Pd content to 5% showed no influence on catalytic activity. This observation is explained by the formation of low active PdO species when Pd content is more than 1%. The proposed SC + IWI method allows obtaining highly active Pd/Ce0.5Sn0.5O2 catalysts with low palladium content.  相似文献   

10.
A series of noble metal catalysts (Ru, Rh, Ir, Pt, and Pd) supported on alumina-stabilized magnesia were prepared and employed in partial oxidation of methane. The prepared catalysts were characterized using BET, SEM, TEM and H2S chemisorption techniques. The results revealed that the Ru and Rh catalysts had the highest activity in catalytic partial oxidation of methane. Based on the obtained results the following order of activity was observed for different catalysts in partial oxidation of methane: Rh  Ru > Ir > Pt > Pd. The obtained results also showed a high catalytic stability without any decrease in methane conversion up to 50 h of reaction.  相似文献   

11.
Titania-supported palladium catalysts modified by tungsten have been tested for the total oxidation of propane. The addition of tungsten significantly enhanced the catalytic activity. Highly active catalysts were prepared containing a low loading of 0.5 wt.% palladium, and activity increased as the tungsten loading was increased up to 6 wt.%. Catalysts were characterised using a variety of techniques, including powder X-ray diffraction, laser Raman spectroscopy, X-ray photoelectron spectroscopy, temperature-programmed reduction and aberration-corrected scanning transmission electron microscopy. Highly dispersed palladium nanoparticles were present on the catalyst with and without the addition of WOx. However, the addition of WOx slightly increases the average palladium particle size, and there was some evidence for the Pd forming epitaxial islands on the support in the tungsten-doped samples. Surface analysis identified a combination of Pd0 and Pd2+ on a Pd/TiO2 catalyst, whereas all of the Pd loading was found in the form of Pd2+ with the addition of tungsten into the catalysts. At low tungsten loadings, isolated monotungstate and some polytungstate species were highly dispersed over the titania support. The concentration of polytungstate species increased as the loading was increased, and it was also promoted by the presence of palladium. The coverage of the highly dispersed tungstate species over the titania also increased as the tungsten loading increased. Some tungstate species were also found to be associated with the palladium oxide particles, and there was an enrichment of oxidised tungsten species at the peripheral interface of the palladium oxide nanoparticles and the titania. Sub-ambient temperature–programmed reduction experiments identified an increased concentration of highly reactive species on catalysts with palladium and tungsten present together, and we propose that the new WOx-decorated interface between PdOx and TiO2 particles may be responsible for the enhanced catalytic activity in the co-impregnated catalysts.  相似文献   

12.
NiCoMgOx and NiCoMgCeOx on commercial low surface area zirconia–haffnia catalysts have unusually high thermal stability (⩾2000 °C) for syngas generation via the methane partial oxidation process (J. Catal., 233, 36, 2005). Herein we report the results on accelerated sulfur deactivation (0.74 mol% sulfur in feed) and corresponding regeneration (at 800 °C in 1:1 O2 + N2 flow) over these catalysts. The NiCoMgCeOx catalyst, due to a larger mobility of lattice oxygen, showed a considerably higher resistance to sulfur poisoning; the higher mobility of the lattice oxygen in case of the NiCoMgCeOx catalyst may be related to the presence of CeO2. During the deactivation process, the selectivity for H2 was decreased to a much greater extent than that for CO. Regeneration studies showed that even after complete deactivation of the catalysts, the original activity/selectivity of both the catalysts could be completely restored after a simple regeneration process. Based on their exceptionally high thermal stability, high activity/selectivity and easily regenerability, the NiCoMgOx and NiCoMgCeOx catalysts appear to be very promising candidates for the CPOM process.  相似文献   

13.
A series of palladium supported on activated carbon catalysts, with Pd varying from 0.5 to 6.0 wt%, were prepared via wet impregnation method using PdCl2 · xH2O as a precursor salt. The dried samples were further reduced at 573 K in hydrogen and characterized by CO adsorption at room temperature in order to determine the dispersion, metal area and particle size. The catalysts were tested for vapour phase phenol hydrogenation in a fixed-bed all glass micro-reactor at a reaction temperature of 453 K under normal atmospheric pressure. The decrease in metal surface area as well as dispersion with corresponding increase in turn-over frequency (TOF) against palladium loadings suggest the unusual inverse relationship that exist between Pd dispersion and phenol hydrogenation activity over Pd/carbon catalysts. The stability of TOF at larger crystallite size indicates that phenol hydrogenation is less sensitive reaction especially beyond 3 wt% of Pd content. It is evident from the results that structural properties of the catalysts strongly influence the availability of Pd atoms on the surface for CO chemisorption and hence for phenol hydrogenation. A comparison between selectivity and product yield of the reaction against overall phenol conversion indicates that changes in reaction selectivity for cyclohexanone or cyclohexanol is independent of phenol conversion level and either of the product is not formed at the cost of another. The stability of the catalysts with reaction time suggests that coke formation on the surface of the catalyst is less significant and the formation of cyclohexanone remains almost total even at higher reaction temperatures.  相似文献   

14.
Phosphorous-modified MoO3/SiO2 catalysts with various P/Mo molar ratios (MoPxO/SiO2, x = 0.3  3.0) were prepared by co-impregnation and compared with MoO3/SiO2 in the oxidation of dibenzothiophene by cumene hydroperoxide. The addition of P significantly enhanced the catalytic performance, and MoP1.0O/SiO2 exhibited the highest oxidation activity. XRD characterization indicated that the active phase of MoP1.0O/SiO2 was amorphous, whereas 31P-NMR measurements revealed that MoP1.0O/SiO2 had a similar connectivity of Mo-O-P to H3PMo12O40. The total sulfur of a hydrotreated diesel was reduced from 298 to 5 ppmw by oxidation with CHP and subsequent dimethylformamide extraction.  相似文献   

15.
A series of (Ce1  xYx)O2 (x = 0,0.15,0.35,0.5) coatings on γ-Al2O3 pre-coated cordierite honeycomb were prepared by sol–gel method, and then palladium was loaded by aqueous solution impregnation deposition with Pd(NO3)2 as precursor. The structure and morphology of samples were evaluated and the catalytic combustion activity for methane was also discussed. (Ce1  xYx)O2 synthesized by sol–gel has a single-phase cubic fluorite structure. Increasing the Y/Ce ratio can significantly improve the inner surface morphology of the honeycomb channels and also the coating mechanical stability, and leads to a considerable improvement in the catalytic activity of the prepared catalysts for methane.  相似文献   

16.
The partial hydrogenation of sunflower oil on a few supported Pd catalysts in supercritical (SC) dimethyl ether (DME) as reaction solvent was studied to obtain hydrogenates with low trans C 18:1 and stearic contents.The kinetics was determined on eggshell 0.5% Pd/Al2O3 and uniform 2% Pd/C catalysts using a sequential experimental design in a continuous, radial-flow, internal recycle reactor. The operating variables were temperature (456–513 K), pressure (18–23 MPa) and the space-velocity (WHSV = 41–975 h−1). The rotation frequency and the molar feed concentration (oil:H2:DME) were held constant at 157 rad/s and 1:4:95 mol%, respectively. Kinetic scheme was based on that published before. Some reactor runs were simulated using mixed-flow assumption and the kinetics data for both systems with good results. A comparison was established between the eggshell 0.5% Pd/Al2O3 in DME and the data for 2% Pd/C in propane with respect to trans production and stearic formation. trans seems to be lower using 2% Pd/C in propane, while the undesired stearic formation is less on the eggshell 0.5% Pd/Al2O3 catalyst in DME. An overview is presented on the merits of the catalysts available for the SCF process in terms of linoleic selectivity and trans yield on a few vegetable fats.  相似文献   

17.
《Catalysis communications》2007,8(11):1659-1664
Co–Al mixed oxides (CAO) was prepared by co-precipitation method from hydrotalcites (HT) as precursors, and their catalytic activity was investigated for the simultaneously catalytic removal of NOx and diesel soot particulates by the temperature-programmed reaction (TPR) technique. All HT samples present well crystallized, layered structures, no excess phases were detected. A nonstoichiometric spinel phase was formed by calcining the CAO at 500 °C and 800 °C, irrespective of the Co/Al ratio. Both the activity of soot oxidation and the selectivity to N2 formation of CAO catalysts calcined at 800 °C were higher than that at 500 °C. The observed difference in the catalytic performance was related to the redox properties of the catalysts and the crystallite size of HT precursors. The active species might come from Co3O4, which acted for redox-type mechanism for soot oxidation in the NOx-soot reaction.  相似文献   

18.
Two Pd/C catalysts were prepared by pyrolysis of Pd(NO3)2 impregnated sawdust. At equal pyrolysis time slow ramping with shorter isothermal heating resulted in 0.9 wt.% Pd/C-S1 sample comprising carbon support with some oxygen-containing moieties and Pd0 with 2.6 nm average particle size (APS) partially decorated with carbon shell, whereas fast temperature ramping and long isothermal heating provided 0.6 wt.% Pd/C-S2 containing Pd0 with 3.7 nm APS, with larger fraction of carbon decorated particles. Pd/C-S1 is slightly more efficient than Pd/C-S2 in gas phase chlorobenzene hydrodechlorination to benzene at 100–250 °C. Only Pd/C-S1 provides hexachlorobenzene hydrodechlorination in liquid phase due to lower APS and probably smaller PdCx content.  相似文献   

19.
The complete catalytic oxidation of trichloroethylene (TCE) over alumina-supported noble metal catalysts (Pt and Pd) and in the presence of hydrogen-rich compounds, i.e. water, hexane and toluene was evaluated. Experiments were performed at conditions of lean TCE concentration (around 1000 ppm) in air, between 250 and 550°C in a conventional fixed-bed reactor. Hexane and toluene were added to the feedstream in a concentration of around 1000 ppm and water concentration varied from 1000 to 15 000 ppm. TCE oxidation occurred faster in the presence of hexane and toluene over both catalysts. Over palladium catalysts, water did not alter catalytic activity, whereas over platinum catalysts water enhanced TCE oxidation at low temperatures (<400°C) but inhibited it at higher temperatures (>400°C). Selectivity to HCl was much improved by feeding water as a hydrogen-supplying reactant; 7500 ppm of water enhanced HCl outputs from 39.4 to 78.0% with Pd, and from 37.5 to 58.9% with Pt. Selectivities to C2Cl4, formed by chlorination of the feed, and Cl2 were greatly reduced. On the other hand water promoted complete oxidation of TCE to CO2, and thus reduced selectivity to CO. In the presence of hexane and toluene, formation of HCl was also enhanced. Hexane showed higher inhibition ability than toluene over both catalysts for the C2Cl4 and Cl2 formation. Unlike in the presence of water, selectivity to CO increased, as a consequence of partial oxidation of both hydrocarbons.  相似文献   

20.
Oscillations of the methane oxidation rate were studied under methane-rich conditions on Pd/Al2O3 catalysts differing in Pd particle size. It was demonstrated that the temperature interval where oscillations occur narrows from 300–360 °C for the catalyst with Pd particle aggregates from 50–100 nm to 345–355 °C for the catalyst with isolated Pd particles of ~ 5 nm in size. At the same time, the period of oscillations showed ~ 6-fold increase. Structural transformations of Pd in the oscillation cycle were similar to those observed on bulk Pd used as a catalyst in the same reaction.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号