首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 937 毫秒
1.
用超临界CO_2作为物理发泡剂,采用间歇釜式微孔发泡技术制备了热塑性聚烯烃弹性体(POE)发泡材料,应用扫描电子显微镜等测试手段探究了发泡温度及饱和压力对POE发泡材料表观结构和微观形态的影响。结果表明,发泡温度和饱和压力对材料泡孔结构和性能影响较大;当饱和压力为10 MPa、发泡温度为65℃时,所得的POE发泡材料表观密度较小、发泡倍率大,其内部泡孔密度较大,泡孔尺寸分布均匀。  相似文献   

2.
采用超临界二氧化碳间歇式发泡法,成功制备了聚丙烯(PP)、PP/POE(乙烯-辛烯共聚物)微孔发泡材料。研究了发泡温度、饱和压力、POE含量对PP复合材料发泡性能的影响,并且,通过研究发泡材料的微观形貌、泡孔直径和膨胀倍率,得到最佳POE添加量。结果表明,在156℃、20 MPa条件下,PP可形成泡孔直径均一、高体积膨胀比的闭孔结构材料。加入POE后,PP复合材料的发泡性能得到改善,对发泡区间影响显著,PP/POE(80∶20)的发泡温度区在40℃以上;PP/POE(80∶20)随着发泡温度的上升,泡孔平均直径先增加后下降,泡孔密度和体积膨胀比逐渐增大;在120℃、20 MPa条件下,添加20%POE,得到了发泡范围大且泡孔均一性较好的发泡材料,泡孔密度为1.13×1011个/cm3,泡孔孔径为2.81μm。  相似文献   

3.
以超临界CO_2为发泡剂,采用固态升温发泡技术制备了微米级和纳米级泡孔结构的聚苯砜(PPSU)泡沫材料,通过扫描电镜对PPSU发泡样品的泡孔形貌进行了表征。在饱和压力为8~25 MPa、发泡温度为160~220℃的范围内制备的PPSU泡沫材料孔径在0.2~2μm之间,泡孔密度为10~(11)~10~(13)cell/cm3,发泡倍率为1~2.5。发泡时间固定为30 s时,泡孔孔径随着发泡温度的升高呈现出先增大后减小的趋势,而且随着饱和压力的升高,孔径不断减小;泡孔密度的变化趋势则与之相反。对发泡密度都为0.6 g/cm~3,且具有不同孔径大小的发泡样品进行了力学性能测试,结果表明:随着泡孔尺寸的减小,拉伸强度和压缩强度均显著提升,孔径为206 nm的发泡样品与孔径为1 920 nm的发泡样品相比,压缩和拉伸强度分别提高了256.1%和106.1%。  相似文献   

4.
采用超临界二氧化碳作为发泡剂,用自制的高压反应釜,在一定温度、压力和保压时间等工艺条件下,探讨经预处理的木粉对高熔体强度聚丙烯(PP)/木粉发泡材料发泡性能的影响。当木粉用量为4份时,PP/木粉发泡材料发泡性能最佳,其发泡倍率最大,为12.6倍,表观密度最小,为0.069g/cm~3,泡孔平均直径为79μm。在木粉用量为4份基础上,研究乙烯–辛烯共聚物(POE)用量对PP/木粉/POE发泡材料发泡性能的影响。结果表明,当POE用量为15份时,得到最佳发泡性能的PP/木粉/POE发泡材料,其发泡倍率最大,为14.8倍,表观密度最小,为0.06g/cm~3,泡孔平均直径为174μm,泡孔分布最均匀。  相似文献   

5.
研究添加不同比例EVA树脂(乙烯-乙酸乙烯酯)和弹性体POE(乙烯-辛烯共聚物)对IXPE发泡材料的表观密度、拉伸性能及泡孔结构的影响。结果表明POE和EVA添加量增加,IXPE表观密度增大;当POE/EVA〈26份时,POE对IXPE发泡材料的拉伸强度的改性效果优于EVA,当POE/EVA〉26份时,EVA对IXPE发泡材料的拉伸强度的改性效果优于POE;POE对IXPE发泡材料断裂伸长率的改性效果较好;添加不同比例POE和EVA,都能制备出泡孔结构均匀IXPE发泡材料。  相似文献   

6.
陈博  鲁圣军  于杰  龚维  郭建兵  张纯 《塑料》2012,41(5):52-55
采用化学发泡法制备以聚乙烯-醋酸乙烯酯(EVA)为基体,不同含量乙烯-辛烯共聚物(POE)及马来酸酐(MAH)接枝的乙烯-辛烯共聚物的复合发泡材料,并研究POE对EVA发泡材料发泡行为及力学性能的影响。结果表明:随着POE含量的增加,一方面增加了发泡材料的弹性,压缩永久变形降低,但拉伸及撕裂强度降低,另一方面减小了泡孔直径,增加泡孔密度,POE在质量分数30%的时候性能最好,泡孔直径是79.2μm。而随着POE-g-MAH含量的增加,一方面显著提高了发泡材料的拉伸、撕裂强度及耐磨强度,另一方面进一步降低了泡孔直径,增大了泡孔密度。接枝马来酸酐的POE质量分数在30%~40%发泡材料的性能最好,泡孔直径为68.1μm。  相似文献   

7.
在聚丙烯(PP)中加入β成核剂(TMB-5),以超临界二氧化碳(CO2)作为发泡剂,用高压发泡釜对其进行间歇发泡。研究β成核剂用量、饱和温度、饱和压力对β成核/PP发泡材料的结晶和发泡性能的影响。结果表明,β成核剂有效促进了β晶的形成,发泡材料中β晶相对含量最高可达到92.4%,但增大饱和压力却会抑制β晶产生。β成核剂同时起到异相成核作用,使泡孔成核更容易,制得的样品发泡性能较好。另外,饱和温度的升高会使PP熔体强度降低,导致泡孔的尺寸增大、密度减小;而随着饱和温度降低,饱和压力升高,气体在熔体中的溶解度增大,泡孔成核数量增多,使泡孔密度增大、泡孔尺寸减小。饱和压力为22 MPa时,泡孔密度可达2.72×108个/cm3。  相似文献   

8.
《塑料》2019,(6)
以超临界二氧化碳(scCO_2)和乙醇为共发泡剂,通过釜压发泡的方法制备特种工程塑料聚砜(PSU)珠粒泡沫制品。研究了乙醇含量、发泡温度、饱和压力对PSU泡沫材料的泡孔结构和珠粒粘接的影响,阐明了共溶剂发泡与泡沫材料泡孔结构的关系。结果表明,乙醇的引入增加了scCO_2在PSU基体中的溶解度,降低了PSU的发泡温度(最低发泡温度为150℃),拓宽了PSU的发泡温度窗口,增大了泡孔尺寸和膨胀倍率。当乙醇含量为33. 9%,发泡温度为180℃,饱和压力为8 MPa时,PSU珠粒泡沫的平均孔径可达86. 0μm,膨胀倍率可达10. 9倍,泡孔密度为9. 4×10~5个/cm~3,其泡沫制品珠粒间粘接良好,力学性能优良,压缩强度可达7. 2 MPa。  相似文献   

9.
微孔发泡材料的泡孔结构主要采用泡孔尺寸和泡孔密度来表征。泡孔尺寸一般使用SigmaScan和Image-pro两种图像分析软件测量,而泡孔密度主要用Kumar法和初始未发泡试样泡孔密度计算法计算。工艺条件的不同,特别是发泡温度、饱和压力、发泡时间、添加成核剂、引入另一聚合物相等工艺条件的改变,都会对发泡材料的泡孔形貌产生影响。发泡温度和饱和压力对泡孔形貌的影响尤甚,并且对泡孔结构的影响趋势是相同的,即随发泡温度或饱和压力的增加,泡孔结构由好变差,存在最佳值。加入合适的成核剂及引入另一聚合物相,亦能起到促进发泡的效果。  相似文献   

10.
应用超临界CO_2间歇发泡方法研究了温度、压力以及不同发泡工艺对超高分子量聚乙烯(UHMWPE)发泡的影响。结果表明:合适的饱和温度可以提高发泡倍率,减小泡孔尺寸,增加泡孔密度;发泡倍率和泡孔密度与饱和压力成正相关;对比不同工艺条件下的发泡结构与尺寸,得出正向发泡的泡孔尺寸小、泡孔密度高,而逆向发泡的泡孔尺寸大,但发泡倍率高。DSC结果表明:正向发泡的结晶度较高,发泡时异相成核数量增加,从而使泡孔尺寸减小、泡孔数量增加。比较正向和逆向发泡相同发泡倍率下的泡沫压缩性能,发现逆向发泡泡沫的弹性模量大于正向发泡泡沫。  相似文献   

11.
以超临界CO_2为发泡剂,采用釜压法在不同发泡工艺条件下制备了聚苯乙烯(PS)发泡试样,通过扫描电子显微镜对PS发泡试样的泡孔形貌进行了表征,探讨了不同发泡工艺对PS发泡试样发泡性能的影响。结果表明,随发泡温度的升高,PS发泡试样泡孔尺寸增大,泡孔密度下降,而泡沫密度呈现先降低后升高的趋势,发泡倍率与此相反;增大保压时间和保压压力,可提高试样的发泡效果。当发泡温度为136℃,保压压力为20 MPa,保压时间为4 h时,PS发泡试样的发泡效果最好,其泡沫密度为0.043 g/cm~3,发泡倍率为24.4,泡孔尺寸为59.8μm,泡孔密度为6.20×107个/cm~3。  相似文献   

12.
通过紫外辐照的方法制备高熔体强度聚丙烯,用于高发泡倍率发泡材料的开发.通过凝胶含量测定研究了敏化剂TMPTA和紫外光引发剂BP的含量以及紫外辐照剂量对交联程度的影响;通过表观密度、力学性能和泡孔形貌研究了紫外辐照剂量对发泡效果的影响.结果表明:凝胶含量30%以上时可制得表观密度为0.060 g/cm3,拉伸强度为1.0 MPa而且泡孔均匀的发泡材料.  相似文献   

13.
以高熔体强度聚丙烯(PP)和乙烯–辛烯共聚物(POE)为主要原料,利用化学发泡法制备了PP/POE微发泡材料。研究了POE用量对PP/POE微发泡材料发泡性能、力学性能的影响;通过研究PP/POE微发泡材料的动态力学性能、结晶行为、泡孔结构,确定了POE的最佳用量。添加POE能改善微发泡材料的动态力学性能,同时将PP的结晶峰温度提升117.01℃,加快了PP的结晶过程,为PP发泡提供合适的内部条件,有效地减少了发泡时过发泡、并泡现象的产生。当POE质量分数为10%时,PP/POE微发泡材料的综合性能达到最优,其缺口冲击强度达到13.2kJ/m2,相比未添加POE的微发泡材料提升了约158.8%,泡孔平均直径减小到60μm左右,泡孔密度达到最大值,为1.19×106个/cm3。  相似文献   

14.
以聚苯乙烯(PS),PS/聚乙烯(PS/PE)共混体系和PS/纳米CaCO3(PS/nano-CaCO3)复合体系为研究对象,以超临界CO2为发泡剂,选择典型工艺条件开展了发泡实验,采用扫描电子显微镜(SEM)观察泡孔结构,比较分析了不同工艺条件下的发泡行为,为利用PS,PS/PE共混体系和PS/nano-CaCO3复合体系提供研究基础。研究结果表明,PS具有较好的成孔性能,在发泡压力为22 MPa、发泡温度为80℃和饱和时间为2 h时,可制得泡孔孔径为(11.19±2.12)μm、泡孔密度为5.31×107个/cm3、发泡倍率2.64的微孔发泡材料。与PS相比,在相同工艺条件下,当添加PE的质量分数为10%时,PS/PE共混体系的泡孔孔径显著减小,泡孔密度有所提高,可通过调节工艺条件调整泡孔形貌;添加质量分数为5%经硅烷偶联剂表面改性的nano-CaCO3,可促进PS/nano-CaCO3复合体系的泡孔成核,改善其泡孔形态,增加泡孔密度,减小泡孔孔径。  相似文献   

15.
以热塑性聚氨酯为原料,超临界CO_2为发泡剂,通过喷动床发泡技术制备了热塑性聚氨酯发泡珠粒,考察了CO_2流速、饱和温度、饱和压力、泄压速率对珠粒发泡行为的影响。结果表明,珠粒发泡均匀性先随着CO_2流速上升而上升,之后基本不变,表明形成稳定喷动后流速的提升对珠粒发泡均匀性无改善作用。珠粒发泡倍率随着饱和温度和饱和压力的提高先上升后下降,随着泄压速率的提高而提高。饱和温度的提高使泡孔密度下降,泡孔直径增大,饱和压力和泄压速率的提高使泡孔密度上升,泡孔直径下降。当CO_2流速为0.012 m/s、饱和温度为150℃、饱和压力为10 MPa、泄压速率为20 MPa/s时,珠粒发泡倍率最大,达到9倍,泡孔密度为1.13×10~7个/cm~3,平均泡孔直径为82.3 μm。  相似文献   

16.
以乙酸-乙酸乙烯共聚物(EVA)为原料,氧化铈(CeO2)掺杂复合载银磷酸锆为抗菌剂,制备抗菌EVA发泡材料。利用无转子硫化仪、扫描电镜等分析了CeO2掺杂复合载银磷酸锆对EVA发泡材料发泡压力和泡孔形态的影响,同时检测了抗菌EVA发泡材料的力学性能及抗菌率。结果表明:含2.8%CeO2掺杂复合载银磷酸锆的EVA发泡材料,其模压发泡过程的发泡压力增大,发泡倍率增加,泡孔孔径增大,相对密度降低,物理力学性能优于普通EVA发泡材料,对大肠杆菌和金黄色葡萄球菌的抗菌率分别为99.10%和98.85%,在自来水中浸泡30天后,其抗菌率仍分别达到98.83%和98.54%。  相似文献   

17.
以CO2为物理发泡剂,采用间歇式升温发泡法制备了纯聚乳酸(PLA)发泡体系,质量分数为10%的丁二醇–己二酸–对苯二甲酸共聚酯(PBAT)增韧PLA发泡体系以及在此基础上添加1份硫酸盐类成核剂(LAK)后所制备的三元发泡体系,绘制了不同饱和压力下这3种体系的CO2解吸附曲线,研究了发泡工艺中CO2饱和压力以及解吸附时间对这3种体系泡孔结构的影响。结果表明,3种体系的CO2吸附率相当且解吸附曲线相似。随饱和压力的增大,3种体系泡孔尺寸均不同程度地减小,泡孔密度增大,尺寸分布趋于均匀。PBAT的加入减小了PLA的泡孔尺寸,增大了泡孔密度,在此基础上添加LAK可进一步改善PLA的泡孔结构,且在CO2的压缩条件(饱和压力为5 MPa)下,PBAT与LAK更能发挥其改善PLA泡孔结构的作用。随解吸附时间的增加,3种体系泡孔尺寸均不同程度地增大,泡孔密度减小,泡孔尺寸分布均匀性变差。在解吸附过程中,PLA/PBAT/LAK体系的泡孔尺寸始终最小,泡孔密度始终最大。  相似文献   

18.
采用物理发泡剂和化学发泡剂的组合发泡剂对聚苯乙烯(PS)在串联挤出发泡机组中进行连续挤出发泡,探讨了不同含量发泡剂和不同发泡温度对PS发泡行为的影响。通过真密度测定仪和扫描电子显微镜对发泡制品的密度、发泡倍率和泡孔形态进行测试。研究结果表明,采用组合复合发泡剂后,PS发泡制品的泡孔密度明显提高,发泡倍率增加,泡体结构优于单独使用物理发泡剂或化学发泡剂的发泡制品。在发泡温度为120℃,CO2注气量为5 mL/min,化学发泡剂用量为3份,SiO2用量为1份时,样品具有最佳泡孔形态,发泡倍率为18.42,泡孔密度为3.53×106个/cm3。  相似文献   

19.
赵娜  李倩  Chul B. Park 《化工学报》2015,66(2):806-813
通过溶液浇铸法制备了聚乙烯醇(PVOH)/微纤化纤维素(MFC)复合薄膜材料,以超临界二氧化碳(scCO2)为物理发泡剂,采用间歇式降压法制备了一系列PVOH/MFC复合微发泡材料,主要讨论了在没有水分的影响下,不同发泡温度和时间以及MFC含量对PVOH/MFC复合微发泡材料的泡孔形貌、泡孔尺寸和泡孔密度的影响;同时,也对MFC的分散性和PVOH/MFC复合材料的流变性能和热性能对发泡行为的影响进行了研究。实验结果表明,均匀分散在PVOH基体中的MFC作为异相成核剂提高了气孔成核能力,且随着MFC含量的增加,泡孔尺寸降低,泡孔密度增大;并研究了发泡温度对PVOH/MFC复合材料的发泡形貌的影响,获得最优发泡温度。  相似文献   

20.
以扩链剂KL–E4370、抗氧剂1010对线型尼龙6(PA6)进行改性,制备出具有高熔体强度的改性PA6材料。采用固态发泡的发泡方法,通过超临界CO2模压发泡制备相应发泡材料。通过差示扫描量热仪,流变仪来表征改性材料的可发泡性,并通过扫描电子显微镜来观测发泡材料的泡孔形貌。探究不同工艺条件对PA6泡沫泡孔结构的影响,分析了不同泡孔结构对发泡材料力学性能的影响。在饱和压力为10~20 MPa、发泡温度为223~231℃的范围内制备的PA6泡沫泡孔直径在18.3~143.6μm之间,泡孔密度为7.42×106~1.75×109个/cm3,发泡倍率为5.6~22.4。所得PA6泡沫的拉伸强度为1.5~5.8 MPa,断裂伸长率为22%~51%,压缩强度为0.03~2.47 MPa。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号