首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The Li2Mg1?xZnxTi3O8 (x = 0–1) and Li2A1?xCaxTi3O8 (A = Mg, Zn and x = 0–0.2) ceramics are synthesized by solid-state ceramic route and the microwave dielectric properties are investigated. The Li2MgTi3O8 ceramic shows ?r = 27.2, Qu × f = 42,000 GHz, and τf = (+)3.2 ppm/°C and Li2ZnTi3O8 has ?r = 25.6, Qu × f = 72,000 GHz, and τf = (?)11.2 ppm/°C respectively when sintered at 1075 °C/4 h. The Li2Mg0.9Zn0.1Ti3O8 dielectric ceramic composition shows the best dielectric properties with ?r = 27, Qu × f = 62,000 GHz, and τf = (+)1.1 ppm/°C. The effect of Ca substitution on the structure, microstructure and microwave dielectric properties of Li2A1?xCaxTi3O8 (A = Mg, Zn and x = 0–0.2) has also been investigated. The materials reported in this paper are excellent in terms of dielectric properties and cost of production compared to commercially available high Q dielectric resonators.  相似文献   

2.
SrLnGaO4 (Ln = La and Nd) ceramics with K2NiF4 structure were prepared by solid-state reaction approach, and the microwave dielectric properties and microstructures were characterized. The SrLaGaO4 and SrNdGaO4 ceramics with minor secondary phase, Sr3Ga2O6, were obtained by sintering at 1250–1350 °C for 3 h, and good microwave dielectric characteristics were achieved: the ceramics had (1) ɛ = 20.3, Q × f = 16,219 GHz, and τf = −33.5 ppm/°C for SrLaGaO4; and (2) ɛ = 21.4, Q × f = 16,650 GHz, and τf = 7.1 ppm/°C for SrNdGaO4.  相似文献   

3.
In this study, CrxSn1−xO2 (0  x  0.06) and Cr0.03Sn0.97−yTiyO2 (0 < y  0.97) compositions were synthesized by the ceramic method and characterized by X-ray diffraction, UV–vis spectroscopy and CIE L*a*b* (Commission Internationale de l’Eclairage L*a*b*) parameters measurements. From CrxSn1−xO2 samples fired at 1600 °C/1 h, x = 0.03 was established as the composition limit of formation of solid solutions. When x  0.01, better coloration of glazed tiles were obtained from short thermal treatment (1400 °C/1 h or 1600 °C/1 h) than from long thermal treatment (1400 °C/24 h). When 0.01 < x < 0.06 small variations of color in glazed tiles were obtained from samples fired at 1400 °C/24 h and 1600 °C/1 h. From Cr0.03Sn0.97−yTiyO2 compositions, a better purple color was obtained when y = 0.02 (Ti/Sn  2.1 × 10−2) than when y = 0.  相似文献   

4.
In the BaO–La2O3–TiO2 system, the BanLa4Ti3 + nO12 + 3n homologous compounds exist on the tie line BaTiO3–La4Ti3O12 besides tungstenbronze-type like Ba6  3xR8 + 2xTi18O54 (R = rare earth) solid solutions. There are four kinds of compounds in the homologous series: n = 0, La4Ti3O12; n = 1, BaLa4Ti4O15; n = 2, Ba2La4Ti5O18; n = 4, Ba4La4Ti7O24. These compounds have the layered hexagonal perovskite-like structure, which has a common sub-structure in the crystal structure. These compounds have been investigated in our previous studies. In this study, we have investigated the phase relation and the microwave dielectric properties of BaxLa4Ti3 + xO12 + 3x ceramics in the range of x between 0.2 and 1.0. With the increase in x, the dielectric constant ɛr locates around 45, the quality factor Q × f shows over 80,000 GHz at x = 0.2 and the minimum value of 30,000 GHz at x = 0.9, and the temperature coefficients of resonant frequency τf is improved from −17 to −12 ppm/°C. At x = 0.2, the ceramic composition obtained has dielectric constant ɛr = 42, the temperature coefficient of the resonant frequency τf  = −17 ppm/°C and a high Q × f of 86,000 GHz.  相似文献   

5.
BaAl2?2x(ZnSi)xSi2O8 (x = 0.2–1.0) ceramics were prepared using the conventional solid-state reaction method. The sintering behaviour, phase composition and microwave dielectric properties of the prepared compositions were then investigated. All compositions showed a single phase except for x = 0.8. By substituting (Zn0.5Si0.5)3+ for Al3+ ions, the optimal sintering temperatures of the compositions decreased from 1475 °C (x = 0) to 1000 °C (x = 0.8), which then slightly increased to 1100 °C (x = 1.0). Moreover, the phase stability of BaAl2Si2O8 was improved. A novel BaZnSi3O8 microwave dielectric ceramic was obtained at the sintering temperature of 1100 °C. This ceramic possesses good microwave dielectric properties with εr = 6.60, Q × f = 52401 GHz (at 15.4 GHz) and τf = ?24.5 ppm/°C.  相似文献   

6.
The microwave dielectric properties of low-loss A0.5Ti0.5NbO4 (A = Zn, Co) ceramics prepared by the solid-state route had been investigated. The influence of various sintering conditions on microwave dielectric properties and the structure for A0.5Ti0.5NbO4 (A = Zn, Co) ceramics were discussed systematically. The Zn0.5Ti0.5NbO4 ceramic (hereafter referred to as ZTN) showed the excellent dielectric properties, with ɛr = 37.4, Q × f = 194,000 (GHz), and τf = −58 ppm/°C and Co0.5Ti0.5NbO4 ceramic (hereafter referred to as CTN) had ɛr = 64, Q × f = 65,300 (GHz), and τf = 223.2 ppm/°C as sintered individually at 1100 and 1120 °C for 6 h. The dielectric constant was dependent on the ionic polarizability. The Q × f and τf are related to the packing fraction and oxygen bond valence of the compounds. Considering the extremely low dielectric loss, A0.5Ti0.5NbO4 (A = Zn and Co) ceramics could be good candidates for microwave or millimeter wave device application.  相似文献   

7.
A novel cation-templated 3D cuprous thiocyanate polymer, {(bppt)[Cu2(NCS)4]}n, bppt = 1,5-bis (pyridinium) pentane, was hydrothermally synthesized and structurally characterized. The compound crystallizes in monoclinic system, space group P2(1)/c with cell parameters of a = 10.1571(8) Å, b = 15.9785(13) Å, c = 15.3983(12) Å, V = 2407.4(3) Å3, Z = 4, Dc = 1.622 g cm?3, F(0 0 0) = 1192, μ = 2.133 mm?1, R1 = 0.0551, wR2 = 0.1246. In the polymeric architecture, Cu2(NCS)4 dimer is connected by NCS? bridging ligand to constitute a infinite 3D framework with the organic cation bppt trapped in it. Photoluminescence investigation reveals that a slightly red shift of 27 nm for the complex takes place comparing with the organic cation.  相似文献   

8.
One-dimensional coordination polymer {[1H,9H-ade]2[MnL2]?4H2O}n (1) and {[1H,3H-cyt]2[CuL2]?6H2O}n (2) (ade = adenine, cyt = cytosine, L = dianion of 2,3-pyridinedicarboxylic acid) are selectively synthesized and variable-temperature magnetic susceptibility measurements revealed weak antiferromagnetic interactions within the chains of 1 and 2 (J = ? 0.29 cm? 1 for 1 and J = ?0.03 cm? 1 for 2, according to the ? 2JijSiSj HDvV Hamiltonian formalism).  相似文献   

9.
The phases, microstructure, composition analysis and microwave dielectric properties of (1 ? x)MgWO4xCaTiO3 ceramics with Li2CO3–4H3BO3 additions prepared by solid-state reaction method have been investigated by using X-ray diffraction, scanning electron microscopy, energy-dispersive spectroscopy and advantest network analyzer. The τf of (1 ? x)MgWO4xCaTiO3 were dependent on phase constitutions. The microwave dielectric properties of 0.91MgWO4–0.09CaTiO3 ceramics with Li2CO3–4H3BO3 were characterized, the results indicated that the ?r and Q × f were associated with the sintering temperature and amount of Li2CO3–4H3BO3. The sintering temperature of ceramics was reduced to 950 °C from 1150 °C and τf was modified to 0 ppm/°C with good Q × f. Addition of 5.0 wt% Li2CO3–4H3BO3 in 0.91MgWO4–0.09 CaTiO3 ceramics sintered at 950 °C showed excellent dielectric properties of ?r = 15.5, Q × f = 20,780 GHz (f = 7.1 GHz) and τf  0 ppm/°C. The material has a chemical compatibility with silver, making it a very promising candidate materials for LTCC applications.  相似文献   

10.
The piezoelectric properties of (1-x-y)PbZrO3-xPbTiO3-yPb(Ni1/3Nb2/3)O3 ceramics were investigated. Specimens with a large Pb(Ni1/3Nb2/3)O3 content, which have compositions close to the triple point, show small g33 and d33 × g33 values because of their large εT330. These values increased with a decrease in y (amount of Pb(Ni1/3Nb2/3)O3) and the specimen with x = 0.39 and y = 0.29 showed the largest g33 of 43 × 10−3 V·m/N and d33 × g33 of 25.2 × 10−12 m2/N. Cantilever-type energy harvesters were fabricated using specimens with 0.38  x  0.41 and y = 0.29. The output power densities of the energy harvesters were related to the d31 × g31 × k312 value of the piezoelectric ceramics. The energy harvester fabricated using a specimen with x = 0.39 and y = 0.29, which has a maximum d31 × g31 × k312 value, showed the maximum output power density of 1.01 mW/cm3.  相似文献   

11.
TiO2 added NiNb2O6 ceramics produced using a reaction-sintering process were investigated. Pure columbite NiNb2O6 could be obtained without TiO2 addition. With 30 and 40 mol% TiO2 addition, a phase with the same structure of Ni0.5Ti0.5NbO4 formed. Grain growth is easier in pellets with 30 and 40 mol% TiO2 addition than in the NiNb2O6 pellets. Microwave dielectric properties: ?r = 20.7, Q × f = 19,800 GHz (at 9 GHz) and τf = ?31.9 ppm/°C were obtained for NiNb2O6 pellets sintered at 1300 °C/2 h. ?r around 45, Q × f = 5400–7700 GHz (at 6 GHz) and τf  73 ppm/°C were obtained in pellets with 30 mol% TiO2 addition. ?r around 50, Q × f = 3800–5700 GHz (at 6 GHz) and τf  99 ppm/°C were obtained in pellets with 40 mol% TiO2 addition.  相似文献   

12.
(1?x)Bi0.51(Na0.82K0.18)0.50TiO3xBa0.85Ca0.15Ti0.90Zr0.10O3 [(1?x)BNKT–xBCTZ] ceramics were prepared by the conventional solid-state method, and the effect of BCTZ content on their microstructure and electrical properties was investigated. A stable solid solution with a pure perovskite phase is formed between BNKT and BCTZ, and these ceramics have a coexistence of rhombohedral and tetragonal phases in the range of 0  x < 0.15. Their Tm and Td values are strongly independent on the BCTZ content. Moreover, the sintering temperature strongly affects the ferroelectric and piezoelectric properties of these ceramics with x = 0.02. These ceramics with x = 0.02 exhibit an optimum electrical behavior of d33  205, kp  0.25, Pr  31.8 μC/cm2, and Ec  19.1 kV/cm together with a high Td value of ~91 °C when sintered at 1180 °C and poled at an optimum condition. As a result, the (1?x)BNKT–xBCTZ ceramic is a promising candidate material for lead-free piezoelectric ceramics.  相似文献   

13.
B2O3 (25.0 mol%) was added to Zn2?xSiO4?x ceramics (0.0  x  0.5) to decrease the sintering temperature. Specimens with 0.0  x  0.3 sintered at 900 °C were well sintered with a high density due to the formation of a B2O3 or B2O3–SiO2 liquid phase. The Q × f value of the Zn2SiO4 ceramic was relatively low, 32,000 GHz, most likely due to the presence of a ZnO second phase. A maximum Q × f value of 70,000 GHz was obtained for the specimens with x = 0.2–0.3, and their ?r and τf values were approximately 6.0 and ?21.9 ppm/°C, respectively. Ag metal did not interact with the 25.0 mol% B2O3-added Zn1.8SiO3.8 ceramic, indicating that Zn2?xSiO4?x ceramics containing B2O3 are a good candidate materials for low temperature co-fired ceramic devices.  相似文献   

14.
La0.85Sr0.15Ga0.8Mg0.2O3?δ pellets obtained by the polymeric organic complex solution method, isostatic pressing and sintering at 1350 °C have been electrical and mechanically studied. Electrical measurements evidenced reasonable ionic conductivities (0.01 S cm?1 at 800 °C), which were comparable to those reported for the La1?xSrxGa1?yMgyO3?δ prepared by other synthesis methods. On the other hand, the mechanical properties (elastic modulus, E and hardness, H) have been determined at micro/nanometric scale using the instrumented indentation technique. While E did not vary significantly with the increasing indentation depth (h), H values strongly decreased with the indentation depth up to 500 nm. For h > 500 nm, both mechanical properties remained almost constant, thus obtaining E = 271 ± 6 GPa and H = 13.2 ± 0.4 GPa. Finally, the residual imprints and fracture mechanisms have been observed by atomic force microscopy (AFM).  相似文献   

15.
Utilizing different rare-earth cations R3+ to the Ba6  3xR8 + 2xTi18O54 compounds is one of effective route to tailor the dielectric constant, quality factor and temperature coefficient of frequency. In this study, densification, microstructural evolution, and microwave dielectric properties of Ba6  3x(Sm1  yNdy)8 + 2xTi18O54 compound, with x ranging from 0.3 to 0.7; and y from 0 to 1.00, were investigated. The ceramics with x = 0.7 [Ba3.9(Sm1  yNdy)9.4Ti18O54] has a higher densification compared with others, due to the formation of vacancy, in the perovskite-like tetragonal cavity of the tungsten bronze-type framework structure. Differential thermal analysis and density results show that the densification of Ba6  3x(SmyNd1  y)8 + 2xTi18O54 ceramics during sintering is primarily resulting from the solid state sintering process. The phase homogeneity for the Ba6  3x(Sm0.5Ndo.5)8 + 2xTi18O54 system is at least extended in the range of x between 0.3 and 0.7. Combining different rare-earth cations appears not alter the single phase range in tungsten bronze-type Ba6  3xR8 + 2xTi18O54 ceramics. The size of the columnar-grain in the microstructure increases with increasing the Nd/Sm ratio as well as the x value. Dielectric constant changes from 91.0 to 84.2 as the x increases from 0.3 to 0.7. Variation of the Nd/Sm ratio allows one to control the τf value to the nearly 0 ppm/°C.  相似文献   

16.
A study of the dielectric properties, especially the Q × f value, of the tungstenbronze-type like (Ba1  αSrα)6  3xNd8 + 2xTi18O54 solid solutions in x = 0 system was carried out. These compositions near x = 0 have very low Q × f values. To improve the Q × f value of these materials, we tried two substitutional systems, which are (Ba1  αSrα)6Nd8Ti18O54 and Ba4Sr2(Nd1  βYβ)8Ti18O54. In the former composition, the Q × f value was increased from 206 to 5880 GHz in the range of 0  α  0.5. And we found that Sr ions substituted for Ba ions in A1 sites have good effect on increasing the Q × f value, but Sr ions substituted for Ba ions in A2 sites have poor effect on increasing it. The latter composition also has a small effect on increasing the Q × f value.  相似文献   

17.
Polycrystalline GdSm1?xCaxZr2O7?x/2 (0  x  0.20) ceramics have been prepared by the solid-state reaction method. The effects of CaO addition on the microstructure and electrical properties of the pyrochlore-type GdSmZr2O7 ceramic were investigated. GdSm1?xCaxZr2O7?x/2 (x  0.05) ceramics exhibit a pyrochlore-type structure; however, GdSm1?xCaxZr2O7?x/2 (0.10  x  0.20) ceramics consist of the pyrochlore-type structure and a small amount of CaZrO3. The total conductivity of GdSm1?xCaxZr2O7?x/2 ceramics follows the Arrhenius relation, and gradually increases with increasing temperature from 723 to 1173 K. GdSm1?xCaxZr2O7?x/2 ceramics are oxide-ion conductors in the oxygen partial pressure range of 1.0 × 10?4–1.0 atm at each test temperature. The highest total conductivity is about 1.20 × 10?2 S cm?1 at 1173 K for the GdSm0.9Ca0.1Zr2O6.95 ceramic.  相似文献   

18.
(1?x)Pb(Zr0.47Ti0.53)O3xPb[(Zn0.4Ni0.6)1/3Nb2/3]O3 [(1?x)PZT–xP(ZN)N] ceramics with 0.26  x  0.31 were sintered at 1100 °C, and their energy harvesters were fabricated. All specimens exhibit a similar energy convergence efficiency. However, the transduction coefficient (d33 × g33) increased with x, reaching 21.5 × 10?15 m2/N for the x = 0.31specimen; the figure-of-merit of the specimens shows a similar variation. The output energy density of the energy harvester also increased with x, and a high output energy density of 231 mW/cm3 was obtained for the harvester fabricated using the x = 0.31 specimen, indicating that the d33 × g33 value significantly affects the output energy density of the energy harvester.  相似文献   

19.
High-temperature G0 polymorph of Rb2KMoO3F3 has been prepared by melt solidification. Micromorphology and chemical properties of the final product were evaluated by scanning electron microscopy (SEM) and X-ray photoelectron spectroscopy (XPS). The elpasolite-related crystal structure of G0-Rb2KMoO3F3 has been refined by Rietveld method at T = 298 K (space group Fm-3m, a = 8.92446(8) Å, V = 710.76(1) Å3; RB = 3.55%). Ferroelectric G1-Rb2KMoO3F3 polymorph, earlier reported at T < 328 K, is not found at T = 298 K.  相似文献   

20.
A new dinuclear cobalt compound, namely Co2(L)(H2O)Cl2 (1, H2L = N,N′-o-phenylenebis(salicylide-neimine) was obtained by one-pot solvothermal self-assembly of CoCl2, 1,2-phenylenediamine, and salicylaldehyde in C2H5OH. The magnetic studies suggest weak antiferromagnetic behavior and the magnetic data were interpreted by means of a dinuclear cobalt model with the parameters of g = 2.12, J = ?1.25 cm?1, θ = ?3.12 K.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号