首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Rapid elastic image registration for 3-D ultrasound   总被引:7,自引:0,他引:7  
A Subvolume-based algorithm for elastic Ultrasound REgistration (SURE) was developed and evaluated. Designed primarily to improve spatial resolution in three-dimensional compound imaging, the algorithm registers individual image volumes nonlinearly before combination into compound volumes. SURE works in one or two stages, optionally using MIAMI Fuse software first to determine a global affine registration before iteratively dividing the volume into subvolumes and computing local rigid registrations in the second stage. Connectivity of the entire volume is ensured by global interpolation using thin-plate splines after each iteration. The performance of SURE was quantified in 20 synthetically deformed in vivo ultrasound volumes, and in two phantom scans, one of which was distorted at acquisition by placing an aberrating layer in the sound path. The aberrating layer was designed to induce beam aberrations reported for the female breast. Synthetic deformations of 1.5-2.5 mm were reduced by over 85% when SURE was applied to register the distorted image volumes with the original ones. Registration times were below 5 min on a 500-MHz CPU for an average data set size of 13 MB. In the aberrated phantom scans, SURE reduced the average deformation between the two volumes from 1.01 to 0.30 mm. This was a statistically significant (P = 0.01) improvement over rigid and affine registration transformations, which produced reductions to 0.59 and 0.50 mm, respectively.  相似文献   

2.
Kim  S.S. Eo  K.S. Kyung  C.M. 《Electronics letters》1988,24(7):382-383
Describes a new hardware architecture known as an edge painting tree (EPT) pipelined binary trees for fast generation of scanline images for raster scan graphics targeted for surface or solid modelling. The hardware complexity of EPT is much smaller than that of earlier raster graphics engines owing to the use of 1 bit logic rather than log2 P bit logic where P is the number of pixels per scanline  相似文献   

3.
The authors have evaluated eight different similarity measures used for rigid body registration of serial magnetic resonance (MR) brain scans. To assess their accuracy the authors used 33 clinical three-dimensional (3-D) serial MR images, with deformable extradural tissue excluded by manual segmentation and simulated 3-D MR images with added intensity distortion. For each measure the authors determined the consistency of registration transformations for both sets of segmented and unsegmented data. They have shown that of the eight measures tested, the ones based on joint entropy produced the best consistency. In particular, these measures seemed to be least sensitive to the presence of extradural tissue. For these data the difference in accuracy of these joint entropy measures, with or without brain segmentation, was within the threshold of visually detectable change in the difference images  相似文献   

4.
We present a new class of approaches for rigid-body registration and their evaluation in studying multiple sclerosis (MS) via multiprotocol magnetic resonance imaging (MRI). Three pairs of rigid-body registration algorithms were implemented, using cross-correlation and mutual information (MI), operating on original gray-level images, and utilizing the intermediate images resulting from our new scale-based method. In the scale image, every voxel has the local "scale" value assigned to it, defined as the radius of the largest ball centered at the voxel with homogeneous intensities. Three-dimensional image data of the head were acquired from ten MS patients for each of six MRI protocols. Images in some of the protocols were acquired in registration. The registered pairs were used as ground truth. Accuracy and consistency of the six registration methods were measured within and between protocols for known amounts of misregistrations. Our analysis indicates that there is no "best" method. For medium misregistration, the method using MI, for small add large misregistration the method using normalized cross-correlation performs best. For high-resolution data the correlation method and for low-resolution data the MI method, both using the original gray-level images, are the most consistent. We have previously demonstrated the use of local scale information in fuzzy connectedness segmentation and image filtering. Scale may also have potential for image registration as suggested by this work.  相似文献   

5.
A 2-D to 3-D nonlinear intensity-based registration method is proposed in which the alignment of histological brain sections with a volumetric brain atlas is performed. First, sparsely cut brain sections were linearly matched with an oblique slice automatically extracted from the atlas. Second, a planar-to-curved surface alignment was employed in order to match each section with its corresponding image overlaid on a curved-surface within the atlas. For the latter, a PDE-based registration technique was developed that is driven by a local normalized-mutual-information similarity measure. We demonstrate the method and evaluate its performance with simulated and real data experiments. An atlas-guided segmentation of mouse brains' hippocampal complex, retrieved from the Mouse Brain Library (MBL) database, is demonstrated with the proposed algorithm.  相似文献   

6.
In this paper, we present a direct image registration approach that uses mutual information (MI) as a metric for alignment. The proposed approach is robust and gives an accurate estimation of a set of 2-D motion parameters in real time. MI is a measure of the quantity of information shared by signals. Although it has the ability to perform robust alignment with illumination changes, multimodality, and partial occlusions, few works have proposed MI-based applications related to spatiotemporal image registration or object tracking in image sequences because of some optimization problems, which we will explain. In this paper, we propose a new optimization method that is adapted to the MI cost function and gives a practical solution for real-time tracking. We show that by refining the computation of the Hessian matrix and using a specific optimization approach, the registration results are far more robust and accurate than the existing solutions, with the computation also being cheaper. A new approach is also proposed to speed up the computation of the derivatives and keep the same optimization efficiency. To validate the advantages of the proposed approach, several experiments are performed.  相似文献   

7.
Genetic algorithms for a robust 3-D MR-CT registration   总被引:3,自引:0,他引:3  
Presents an original usage of genetic algorithms as a robust search space sampler in an application to 3D medical image elastic registration. An overview of the standard steps of a registration algorithm is given. We focus on the genetic algorithm use, and particularly on the problem of extracting the optimal solution among the final genetic population. We provide an original encoding scheme relying on a structural approach of point matching and then point out the need for a local optimization process. We then illustrate the algorithm with a concrete registration example and assert the results with a direct multi-volume rendering tool. Finally, the algorithm is applied to the Vanderbilt medical image database to assert its robustness and in order to compare it with other techniques  相似文献   

8.
Respiratory motion remains a significant source of errors in treatment planning for the thorax and upper abdomen. Recently, we proposed a method to estimate two-dimensional (2-D) object motion from a sequence of slowly rotating X-ray projection views, which we called deformation from orbiting views (DOVs). In this method, we model the motion as a time varying deformation of a static prior of the anatomy. We then optimize the parameters of the motion model by maximizing the similarity between the modeled and actual projection views. This paper extends the method to full three-dimensional (3-D) motion and cone-beam projection views. We address several practical issues for using a cone-beam computed tomography (CBCT) scanner that is integrated in a radiotherapy system, such as the effects of Compton scatter and the limited gantry rotation for one breathing cycle. We also present simulation and phantom results to illustrate the performance of this method.  相似文献   

9.
Digital image coding using vector quantization (VQ) based techniques provides low-bit rates and high quality coded images, at the expense of intensive computational demands. The computational requirement due to the encoding search process, had hindered application of VQ to real-time high-quality coding of color TV images. Reduction of the encoding search complexity through partitioning of a large codebook into the on-chip memories of a concurrent VLSI chip set is proposed. A real-time vector quantizer architecture for encoding color images is developed. The architecture maps the mean/quantized residual vector quantizer (MQRVQ) (an extension of mean/residual VQ) onto a VLSI/LSI chip set. The MQRVQ contributes to the feasibility of the VLSI architecture through the use of a simple multiplication free distortion measure and reduction of the required memory per code vector. Running at a clock rate of 25 MHz the proposed hardware implementation of this architecture is capable of real-time processing of 480×768 pixels per frame with a refreshing rate of 30 frames/s. The result is a real-time high-quality composite color image coder operating at a fixed rate of 1.12 b per pixel  相似文献   

10.
We evaluated semiautomatic, voxel-based registration methods for a new application, the assessment and optimization of interventional magnetic resonance imaging (I-MRI) guided thermal ablation of liver cancer. The abdominal images acquired on a low-field-strength, open I-MRI system contain noise, motion artifacts, and tissue deformation. Dissimilar images can be obtained as a result of different MRI acquisition techniques and/or changes induced by treatments. These features challenge a registration algorithm. We evaluated one manual and four automated methods on clinical images acquired before treatment, immediately following treatment, and during several follow-up studies. Images were T2-weighted, T1-weighted Gd-DTPA enhanced, T1-weighted, and short-inversion-time inversion recovery (STIR). Registration accuracy was estimated from distances between anatomical landmarks. Mutual information gave better results than entropy, correlation, and variance of gray-scale ratio. Preprocessing steps such as masking and an initialization method that used two-dimensional (2-D) registration to obtain initial transformation estimates were crucial. With proper preprocessing, automatic registration was successful with all image pairs having reasonable image quality. A registration accuracy of approximately equal to 3 mm was achieved with both manual and mutual information methods. Despite motion and deformation in the liver, mutual information registration is sufficiently accurate and robust for useful applications in I-MRI thermal ablation therapy.  相似文献   

11.
In image-guided therapy, high-quality preoperative images serve for planning and simulation, and intraoperatively as "background", onto which models of surgical instruments or radiation beams are projected. The link between a preoperative image and intraoperative physical space of the patient is established by image-to-patient registration. In this paper, we present a novel 3-D/2-D registration method. First, a 3-D image is reconstructed from a few 2-D X-ray images and next, the preoperative 3-D image is brought into the best possible spatial correspondence with the reconstructed image by optimizing a similarity measure (SM). Because the quality of the reconstructed image is generally low, we introduce a novel SM, which is able to cope with low image quality as well as with different imaging modalities. The novel 3-D/2-D registration method has been evaluated and compared to the gradient-based method (GBM) using standardized evaluation methodology and publicly available 3-D computed tomography (CT), 3-D rotational X-ray (3DRX), and magnetic resonance (MR) and 2-D X-ray images of two spine phantoms, for which gold standard registrations were known. For each of the 3DRX, CT, or MR images and each set of X-ray images, 1600 registrations were performed from starting positions, defined as the mean target registration error (mTRE), randomly generated and uniformly distributed in the interval of 0-20 mm around the gold standard. The capture range was defined as the distance from gold standard for which the final TRE was less than 2 mm in at least 95% of all cases. In terms of success rate, as the function of initial misalignment and capture range the proposed method outperformed the GBM. TREs of the novel method and the GBM were approximately the same. For the registration of 3DRX and CT images to X-ray images as few as 2-3 X-ray views were sufficient to obtain approximately 0.4 mm TREs, 7-9 mm capture range, and 80%-90% of successful registrations. To obtain similar results for MR to X-ray registrations, an image, reconstructed from at least 11 X-ray images was required. Reconstructions from more than 11 images had no effect on the registration results.  相似文献   

12.
A folded very large scale integration (VLSI) architecture is presented for the implementation of the two-dimensional discrete wavelet transform, without constraints on the choice of the wavelet-filter bank. The proposed architecture is dedicated to flexible block-oriented image processing, such as adaptive vector quantization used in wavelet image coding. We show that reading the image along a two-dimensional (2-D) pseudo-fractal scan creates a very modular and regular data flow and, therefore, considerably reduces the folding complexity and memory requirements for VLSI implementation. This leads to significant area savings for on-chip storage (up to a factor of two) and reduces the power consumption. Furthermore, data scheduling and memory management remain very simple. The end result is an efficient VLSI implementation with a reduced area cost compared to the conventional approaches, reading the input data line by line  相似文献   

13.
Tagged magnetic resonance imaging (MRI) is unique in its ability to noninvasively image the motion and deformation of the heart in vivo, but one of the fundamental reasons limiting its use in the clinical environment is the absence of automated tools to derive clinically useful information from tagged MR images. In this paper, we present a novel and fully automated technique based on nonrigid image registration using multilevel free-form deformations (MFFDs) for the analysis of myocardial motion using tagged MRI. The novel aspect of our technique is its integrated nature for tag localization and deformation field reconstruction using image registration and voxel based similarity measures. To extract the motion field within the myocardium during systole we register a sequence of images taken during systole to a set of reference images taken at end-diastole, maximizing the normalized mutual information between the images. We use both short-axis and long-axis images of the heart to estimate the full four-dimensional motion field within the myocardium. We also present validation results from data acquired from twelve volunteers.  相似文献   

14.
Atherosclerosis at the carotid bifurcation resulting in cerebral emboli is a major cause of ischemic stroke. Most strokes associated with carotid atherosclerosis can be prevented by lifestyle/dietary changes and pharmacological treatments if identified early by monitoring carotid plaque changes. Registration of 3-D ultrasound (US) images of carotid plaque obtained at different time points is essential for sensitive monitoring of plaque changes in volume and surface morphology. This registration technique should be nonrigid, since different head positions during image acquisition sessions cause relative bending and torsion in the neck, producing nonlinear deformations between the images. We modeled the movement of the neck using a “twisting and bending” model with only six parameters for nonrigid registration. We evaluated the algorithm using 3-D US carotid images acquired at two different head positions to simulate images acquired at different times. We calculated the mean registration error (MRE) between the segmented vessel surfaces in the target image and the registered image using a distance-based error metric after applying our “twisting and bending” model-based nonrigid registration algorithm. We achieved an average registration error of $0.80 pm 0.26$ mm using our nonrigid registration technique, which was a significant improvement in registration accuracy over rigid registration, even with reduced degrees-of-freedom compared to the other nonrigid registration algorithms.   相似文献   

15.
Standardized evaluation methodology for 2-D-3-D registration   总被引:3,自引:0,他引:3  
In the past few years, a number of two-dimensional (2-D) to three-dimensional (3-D) (2-D-3-D) registration algorithms have been introduced. However, these methods have been developed and evaluated for specific applications, and have not been directly compared. Understanding and evaluating their performance is therefore an open and important issue. To address this challenge we introduce a standardized evaluation methodology, which can be used for all types of 2-D-3-D registration methods and for different applications and anatomies. Our evaluation methodology uses the calibrated geometry of a 3-D rotational X-ray (3DRX) imaging system (Philips Medical Systems, Best, The Netherlands) in combination with image-based 3-D-3-D registration for attaining a highly accurate gold standard for 2-D X-ray to 3-D MR/CT/3DRX registration. Furthermore, we propose standardized starting positions and failure criteria to allow future researchers to directly compare their methods. As an illustration, the proposed methodology has been used to evaluate the performance of two 2-D-3-D registration techniques, viz. a gradient-based and an intensity-based method, for images of the spine. The data and gold standard transformations are available on the internet (http://www.isi.uu.nl/Research/Databases/).  相似文献   

16.
Modality-independent elastography (MIE) is a method of elastography that reconstructs the elastic properties of tissue using images acquired under different loading conditions and a biomechanical model. Boundary conditions are a critical input to the algorithm and are often determined by time-consuming point correspondence methods requiring manual user input. This study presents a novel method of automatically generating boundary conditions by nonrigidly registering two image sets with a demons diffusion-based registration algorithm. The use of this method was successfully performed in silico using magnetic resonance and X-ray-computed tomography image data with known boundary conditions. These preliminary results produced boundary conditions with an accuracy of up to 80% compared to the known conditions. Demons-based boundary conditions were utilized within a 3-D MIE reconstruction to determine an elasticity contrast ratio between tumor and normal tissue. Two phantom experiments were then conducted to further test the accuracy of the demons boundary conditions and the MIE reconstruction arising from the use of these conditions. Preliminary results show a reasonable characterization of the material properties on this first attempt and a significant improvement in the automation level and viability of the method.  相似文献   

17.
A new method for medical image registration is formulated as a minimization problem involving robust estimators. We propose an efficient hierarchical optimization framework which is both multiresolution and multigrid. An anatomical segmentation of the cortex is introduced in the adaptive partitioning of the volume on which the multigrid minimization is based. This allows to limit the estimation to the areas of interest, to accelerate the algorithm, and to refine the estimation in specified areas. At each stage of the hierarchical estimation, we refine current estimate by seeking a piecewise affine model for the incremental deformation field. The performance of this method is numerically evaluated on simulated data and its benefits and robustness are shown on a database of 18 magnetic resonance imaging scans of the head.  相似文献   

18.
This paper focuses on a new digital architecture of pulse mode neuro-fuzzy system (PMNFS) with on-chip learning ability. The main purpose goal is to make use of the outstanding features of neuro-fuzzy in function approximation, and implement a reconfigurable architecture with on-chip learning on a field-programmable gate array (FPGA) platform. Details of the whole design with on-chip learning solutions are given. As an application illustrating the efficiency and scalability of the proposed PMNFS, we have considered the approximation of image denoising, which is a very important step in image processing. Experimental results show great efficiency of the proposed method, outperforming other denoising techniques. It was also demonstrated that such a system is strongly adaptive and gives good restored images independently of the kind of noises. Owing to learning, such feature cannot be met with conventional denoising techniques. Design synthesis results on a virtex II PRO FPGA platform are presented. Comparisons with conventional techniques as well as neural ones show higher performances of the designed PMNFS.  相似文献   

19.
This paper deals with topology preservation in three-dimensional (3-D) deformable image registration. This work is a nontrivial extension of, which addresses the case of two-dimensional (2-D) topology preserving mappings. In both cases, the deformation map is modeled as a hierarchical displacement field, decomposed on a multiresolution B-spline basis. Topology preservation is enforced by controlling the Jacobian of the transformation. Finding the optimal displacement parameters amounts to solving a constrained optimization problem: The residual energy between the target image and the deformed source image is minimized under constraints on the Jacobian. Unlike the 2-D case, in which simple linear constraints are derived, the 3-D B-spline-based deformable mapping yields a difficult (until now, unsolved) optimization problem. In this paper, we tackle the problem by resorting to interval analysis optimization techniques. Care is taken to keep the computational burden as low as possible. Results on multipatient 3-D MRI registration illustrate the ability of the method to preserve topology on the continuous image domain.  相似文献   

20.
A need for an entirely new medical workstation design was identified to increase the deployment of 3D medical imaging and multimedia communication. Recent wide acceptance of the World Wide Web (WWW) as a general communication service within the global network has shown how big the impact of standards and open systems can be. Information is shared among heterogeneous systems and diverse applications on various hardware platforms only by agreeing on a common format for information distribution. For medical image communications, the Digital Imaging and Communication in Medicine (DICOM) standard is possibly anticipating such a role. Logically, the next step is open software: platform-independent tools, which can as easily be transferred and used on multiple platforms. Application of the platform-independent programming language Java enables the creation of plug-in tools, which can easily extend the basic system. Performance problems inherent to all interpreter systems can be circumvented by using a hybrid approach. Computationally intensive functions like image processing functions can be integrated into a natively implemented optimized image processing kernel. Plug-in tools implemented in Java can utilize the kernel functions via a Java-wrapper library. This approach is comparable to the implementation of computationally intensive operations in hardware  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号