首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 187 毫秒
1.
为了进一步简化微型直接甲醇燃料电池(μDMFC)系统,便于电池批量生产,采用MEMS技术制作μDMFC.电池的制作包括传统的MEMS工艺,如,氧化、光刻、湿法刻蚀、硅-玻璃键合等方法,还包括一种新的催化电极制备方法,即采用硅片阳极氧化的方法.首先,制得多孔硅(PS)作为催化电极的基底,然后,采用化学镀法分别在PS上沉积出Pt阴极催化电极和Pt-Ru阳极催化电极.PS具有巨大的比表面积,使化学镀的催化剂层拥有不连续的三维结构,能显著增加催化剂的活性面积,同时,化学镀液中贵金属的利用率高达95%,可以有效地节约贵金属用量.研究中采用扫描电镜(SEM),能量色散X射线分析(EDX)对催化剂层的形貌和成分等物理性能进行了分析.  相似文献   

2.
本文以高分子固体电解质为基础制备了三电极原电池型氢气传感器,详细考察了溅射镀膜法、化学镀膜法、铂黑模压法等不同的催化电极的制备方法,及相应传感器的性能.溅射法制备的铂催化电极活性最高,性能稳定,灵敏度达到模压法制备的铂黑电极传感器的16倍,传感器在0~104 ppm范围内输出电流与氢气浓度呈线性关系,灵敏度达到4 μA/100 ppm.化学镀膜法制备的铂电极性能不稳定.  相似文献   

3.
采用双槽电化学腐蚀法在p+单晶硅表面制备多孔硅层,然后在多孔硅表面沉积形成Pt薄膜电极,制备出多孔硅气敏元件样品.利用SEM技术分析多孔硅的表面形貌,研究了腐蚀条件对多孔硅的孔隙率、横向I-V特性及低浓度NO2气敏特性的影响.结果表明,多孔硅的横向I-V特性表现出非整流的欧姆接触;多孔硅的孔隙率及其对低浓度NO2的灵敏度均随腐蚀电流密度的增大而增加.当腐蚀电流密度为90 mA/cm2,腐蚀时间为30 min时,所得多孔硅气敏元件对体积分数为200×10-9的NO2的灵敏度可达到5.25,响应时间与恢复时间约分别为14 min与10 min.  相似文献   

4.
多孔阳极氧化铝经化学修饰后吸附细胞色素C,制备了过氧化氢生物传感器电极。多孔阳极氧化铝通过电化学和化学腐蚀阻挡层后,用两步无电沉积方法制备了纳米金修饰的多孔阳极氧化铝电极,再在含有L-半胱氨酸的细胞色素C的溶液中通过吸附制备细胞色素C电极。用循环伏安法和计时电流法测试细胞色素C电极的电化学性能及催化对过氧化氢的还原。结果表明,包覆的细胞色素C电极显示较好的稳定性,在扫描速度为80 mV/s时于-50 mV、-190 mV附近出现一对稳定的氧化还原峰。该电极对过氧化氢具有良好的电催化还原性能,在1.5×10-5 mol/L~4.8×10-4 mol/L浓度范围内,电流与浓度呈良好的线性关系。多孔阳极氧化铝经化学修饰后,可应用于生物传感器。  相似文献   

5.
研究了面向微型燃料电池膜电极的多孔硅薄膜的制备工艺.多孔硅刻蚀工艺高效便宜,与标准CMOS工艺兼容.通过选择不同的衬底掺杂浓度和适当的电解液浓度能控制纳米(或微米)级多孔硅的孔径大小,得到适用于膜电极的纳米级孔径的多孔硅薄膜,证实了纳米级多孔硅可用于硅微燃料电池中膜电极的可能性.  相似文献   

6.
采用双槽电化学腐蚀法在p+单晶硅表面制备多孔硅层,然后在多孔硅表面沉积形成Pt薄膜电极,制备出多孔硅气敏元件样品。利用SEM技术分析多孔硅的表面形貌,研究了腐蚀条件对多孔硅的孔隙率、横向Ⅰ-Ⅴ特性及低浓度NO2气敏特性的影响。结果表明,多孔硅的横向Ⅰ-Ⅴ特性表现出非整流的欧姆接触;多孔硅的孔隙率及其对低浓度NO2的灵敏度均随腐蚀电流密度的增大而增加。当腐蚀电流密度为90mA/cm^2,腐蚀时间为30min时.所得多孔硅气敏元件对体积分数为200×10^-9的NO2的灵敏度可达到5.25,响应时间与恢复时间约分别为14min与10min。  相似文献   

7.
非汞电极溶出伏安法及其生物分析应用新进展   总被引:1,自引:0,他引:1  
该文简要综述了非汞电极(铋膜电极、锑膜电极、欠电位沉积相关的贵金属电极、其它惰性电极)阳极溶出伏安法测定重金属离子及其生物分析应用的研究新进展,引用文献45篇.  相似文献   

8.
研制了基于抗体包被化学镀纳米金(AuNPs)和[Cu (bpy) 2 (ONO)]NO3配合物(CuL)共固定修饰玻碳电极(GCE)的安培免疫传感器,并用于血清中癌胚抗原(CEA)的检测。首先将GCE电极表面氧化形成羧基,进而键合上乙二胺。将此胺化电极浸泡在CuL和化学镀金溶液后, CuL可通过π-π堆积作用吸附到GCE表面,并在电极表面还原成30~50 nm的纳米金层(GCE|CuL/AuNPs)。将上述电极浸泡在CEA抗体(anti CEA)溶液中,利用AuNPs固定anti CEA,并通过辣根过氧化物酶(HRP)封闭剩余的AuNPs位点,由此构建了一类快速检测 CEA的无试剂安培免疫传感器(GCE|CuL-AuNPs /anti CEA-HRP)。由于HRP可以催化CuL和过氧化脲(CP)的氧化还原反应,因此该电极在CP溶液中形成催化还原电流。当该传感器在37 ℃下,含CEA的pH 6.5PBS溶液中温育30 min后,随着温育液中CEA浓度的增加,电极表面形成的免疫复合物也增加,导致CuL 对CP 的催化电流下降。电流下降百分比I%与CEA浓度在0.1~80 ng/mL 成线性关系,检测限为0.052 ng/mL(3σ)。由于采用化学镀法可以方便地在GCE表面制备纳米金膜进而包被抗体,并通过π-π堆积作用吸附CuL作为电子媒介体,故该免疫电极制备简单;采用可催化CP还原的HRP封闭AuNPs层多余位点,大大提高了电极灵敏度,有望用血清中痕量CEA分析。  相似文献   

9.
研究设计一种室内甲醛气体实时监测和处理一体化装置。首先,通过电化学方法刻蚀大面积硅纳米线阵列并通过无电镀技术制备镍/硅纳米线(Ni/Si Nanowires)和钯-镍/硅纳米线(Pd-Ni/Si Nanowires)阵列电极,Pd-Ni/Si Nanowires阵列电极对甲醛有很强电化学催化氧化作用,以其为电化学甲醛传感器工作阳极,以Ni/Si Nanowires阵列为对电极,Ag/AgCl为参考电极,循环伏安技术测试结果显示该传感器对甲醛浓度灵敏度高达0.265 mA/(mmol/L),三倍信噪比检测限为2μmol/L。其次,利用STC12C5410AD单片机产生三角波扫描电压模拟循环伏安原理,可利用回路中因催化氧化产生的峰电流值来监测室内甲醛浓度,并进一步通过恒压电催化将甲醛处理。该设计方案新颖、成本低廉、便于携带,具有较大实际应用价值。  相似文献   

10.
研究了多孔硅层厚度,孔隙率以及多孔硅中微晶粒尺寸三个微结构参数对其热绝缘性的影响机制.实验选用p ,p-两种掺杂浓度的硅片基底,采用电化学腐蚀法,通过改变腐蚀时间和腐蚀电流密度获得不同微结构参数的多孔硅层.分别采用显微拉曼光谱法及测量显微镜聚焦法测量了样品的热导率和厚度.研究发现,多孔硅层厚度影响热量传输路径,而孔隙率和微晶粒尺寸通过降低热导率从而使多孔硅的绝热性增强.  相似文献   

11.
The nickel electroforming method using a high-concentration nickel sulfamate bath is commonly used to fabricate micro metal molds in the LIGA process; however, this method does not produce micro metal molds of sufficient hardness. One means of improving the hardness of micro metal molds made using the nickel electroforming method is to include additives in the nickel plating solution. Another method is nickel alloy plating or a similar technique. In this research, we used a nickel–boron (Ni–B) electroless alloy plating method to obtain a hard nickel plated film having hardness of 832 Hv. It was also ascertained that Ni–B electroless alloy plated film retains its high hardness even during heat treatment in conditions of 250°C for 1 h. To deal with the high stresses developed in high-hardness plated films, we proposed double-layer nickel electroforming. This method is covered and used on conventional nickel electroforming layer by high hardness micro mold. High hardness micro metal mold using double-layer was fabricated by nickel electroforming and Ni–B electroless alloy plating method.  相似文献   

12.
In this study, the supercritical fluid pretreatment technology was employed to complete the electroless plating and the wool fabrics plated with copper were prepared via electroless plating. Through the oxidation–reduction reactions, the copper deposited and formed a heterogeneous metal layer on the wool fiber surfaces. Some technique such as SEM was employed to characterize the distribution state of the copper layer staying on the wool fiber surfaces. The shielding property of the wool fabrics plated with copper was examined. It was experimentally proved that the wool fabrics plated with copper exhibited good anti-static and anti-UV properties as well as high durability.  相似文献   

13.
A new simple method, selective electroless silver plating, has been developed for fabricating optical fiber probes with protruding tips. The key of the method is the surface treatments of the tapered optical fiber. Surface treatments contain following steps: self-assembly of MPTS, masked UV exposure and catalyst adsorption. By these treatments, selective active binding site of silver is formed in the tapered optical fiber.  相似文献   

14.
A new ionic polymer actuator was prepared with Nafion®-117 membrane and electrodes made of an electrospun Nafion®/multiwalled carbon nanotube (MWNT) web. The surfaces of composite electrodes were ion-beam coated with gold layers of 2-3 μm thickness to reduce the surface resistance. The composite electrodes offer several advantages over conventional platinum electrodes prepared via electroless plating process, i.e. flexibility, simple processability in large scales, and batch-to-batch reproducibility. The new ionic polymer-metal composite (IPMC) actuators showed a rapid and large bending motion. Under an applied potential of 3 V dc, the maximum horizontal displacement (δmax) measured at the tip of IPMC strip (cantilever length: 20 mm) was 16.7 mm, the tip velocity in the initial linear region was 10.5 mm/s, 88% of the δmax was reached within initial 5 s, and the generated strain% was 0.79 (13.6 mm, 7.2 mm/s, 85%, and 0.88, respectively for a conventional Nafion®-IPMC made via the electroless plating of platinum). It was noted that the energy efficiency of strain was over 10 times higher than that of the conventional Nafion®-IPMC. And the crack formation of metal electrode after repeated bending deformation significantly reduced with the introduction of relatively flexible electrode assembly into the IPMC architecture. The remarkable improvements in its performance were considered to be due to the efficient quantum chemical and double-layer electrostatic effects in a charge injection model, induced by the good dispersion of MWNTs through a typical electrospinning technique.  相似文献   

15.
In this study a promising approach for a novel fuel cell catalyst layer is shown using films of carbon nanotubes (CNTs) formed by the layer-by-layer (LbL) method. A special focus is on the dispensing procedure of CNTs in water what is one of the most essential steps to realize monolayers in a reproducible way as targeted in LbL. Furthermore, the platination of the tubes is demonstrated using the reduction of platinum salt in ethylene glycol resulting in a sufficient distribution of nanosized particles. Finally, ultrathin films based on the functionalized nanotubes are investigated with atomic force microscopy, showing promising results for the future use as catalyst layer.  相似文献   

16.
This work presents a new method for the fabrication of buried microchannels, covered with porous silicon (PS). The specific method is a two-step electrochemical process, which combines PS formation and electropolishing. In a first step a PS layer with a specific depth is created at a predefined area and in the following step a cavity underneath is formed, by electropolishing of silicon. The shape of the microchannel is semi-cylindrical due to isotropic formation. The method allows accurate control of the dimensions of both PS and the cavity. The formation conditions of the PS layer and the cavity were optimized so as to obtain smooth microchannel walls. In order to obtain stable structures the area underneath the PS masking layer was transformed into n-type by implantation, taking advantage of the selectivity of PS formation between n- and p-type silicon. With this technique, a monocrystalline support for the PS layer is formed on top of the cavity. Various microchannel diameters with different thickness of capping PS layer were obtained. The process is CMOS compatible and it uses only one lithographic step and leaves the surface of the wafer unaffected for further processing. A microfluidic thermal flow sensor was fabricated using this technology, the experimental evaluation of which is in progress.  相似文献   

17.
Organic thin‐film transistors (OTFTs) can be fabricated via a wet process and have exceptionally high flexibility. Therefore, production using the roll‐to‐roll (RtoR) method is expected. We succeeded in developing a new OTFT wet fabrication process adaptable to the RtoR process. Utilizing the electroless plating method for wiring formation, all materials can be formed in a wet process and can be patterned using the photolithography process. In addition, we succeeded in fabricating OTFT on an A4‐type flexible substrate using RtoR direct imaging exposure system.  相似文献   

18.
Abstract— In an attempt to reduce materials and processing costs of ACPDPs, aluminum fence electrodes were prepared on soda‐lime glass substrates by chemically etching aluminum foil bonded directly onto the substrate via an anodic‐bonding process. Several different fence‐electrode patterns were designed and coated either with a glass dielectric layer or with an anodic aluminum oxide layer. Firing voltages, operation margin, luminance, and luminous efficiency of such test panels were evaluated. The results indicated that the performance of test panels with aluminum fence electrodes is comparable with conventional test panels with ITO/Ag electrodes, demonstrating the possibility of a dramatic reduction in the costs of ACPDPs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号