共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
3.
为解决目前传统新风系统常用的纸芯能量回收器存在新风、回风交叉污染及能量综合回收率低的问题,将椭圆扭曲管应用于空调新风系统,基于铝合金传热元件研发了一种新型高效的能量回收器。设计椭圆扭曲管和圆管两种不同结构的能量回收器,应用Fluent软件进行数值模拟,对比分析其换热和流动性能,并对其应用于空调新风系统的节能效果进行分析。结果表明,相对于圆管能量回收器,空气在通过椭圆扭曲管能量回收器时壳程温度下降得更快,管程温度提升也更快,换热系数更高,换热效果更好,尤其是处于夏季工况时换热效果较为明显。增设了能量回收器的新风机可以有效提升室内环境的舒适性,在夏热冬冷和寒冷地区节能效果显著。 相似文献
4.
以水为工质,对双向扭曲管湍流状态下传热与流阻特性进行数值计算和准确性实验验证,分析了其强化换热机理及截面尺寸a与导程S对其传热流阻的影响,并在其基础上对双向扭曲管结构参数进行多目标优化以及努塞尔数和阻力系数的关系式拟合。结果表明:相同工况下,双向扭曲管的综合换热性能优于光管和扭曲管,在Re小于20 000时具有较好的强化效果,且高出扭曲管3.92%;流体旋转流动的方向周期性改变,进一步强化了对流传热;当a增加到一定程度,管内的湍流程度不再增加;相同Re下,η、Nu和f对导程S的变化反应较灵敏。在Re=2 300~20 000、介质为水时,拟合关系式具有较高的准确性,且通过优化得到了结构的最优组合。 相似文献
5.
本文将计算流体力学应用到换热器领域,对具有相变换热混合工质低温板翅式换热器表面传热与流阻特性进行数值模拟,得到沿长度方向一定温度下传热系数、压力梯度的变化曲线,并将数值模拟结果与目前国际上通用的换热器设计仿真软件MUSE计算结果相比对,证明了本文所用数值模拟方法的正确性,为具有相变换热混合工质的换热器设计和优化提供一定参考。 相似文献
6.
针对烟气横掠顺列螺旋槽管束外侧的流动传热问题,利用CFD技术、通过改变顺列螺旋槽管束的横向、纵向间距、螺距、槽深等结构参数,对烟气横掠螺旋槽管管外的流动传热特性进行数值模拟,分析多几何参数对螺旋槽管管外流动传热特性的影响,得出强化传热的原因和合理的结构参数。研究表明:螺旋槽管束管外传热特性数Nu比光管管束高7%-20.6%;随横向间距的增大,管外传热特性数Nu减小,烟气流动阻力也随之减小;纵向间距的增大使管外传热特性数Nu和烟气流动阻力均增大;增加螺距或减小槽深都可以强化换热,但烟气流动阻力也会增大;综合考虑,螺旋槽管束的横、纵向间距分别取s1/d=1.75-2,s2/d=1.5-1.75,螺距P取25-30 mm,槽深e取0.4-1 mm。 相似文献
7.
根据纵向涡强化传热技术提出了新型的强化换热管——锥形内肋管,运用数值模拟方法,研究了新型强化换热管结构参数锥底宽度a、导程P、肋深e和Re数对Nu、沿程阻力系数f及传热综合因子η的影响。结果表明:换热管内壁面边缘处产生了较多的微小涡流,有效破坏了流动边界层,强化了传热。在充分湍流的条件下,流体Re越小、e越小,其综合传热性能越强。当Re<15 000时,a对η的影响要大于P;在过渡点后, P对η影响较大。通过综合传热性能分析,给出了适合不同Re区间的锥形内肋优化参数。 相似文献
8.
排气系统对发动机的性能有很大影响,作者在 M P C排气系统的基础上,提出了一种新型螺旋流排气系统,它利用支管与总管切向斜交,使气体从支管流出后在总管内产生螺旋运动,可以减小气体由支管进入总管时的撞击损失,同时可以防止扫气干扰;气体产生螺旋运动还可以减少总管横截面的二次流损失和局部回流损失。为了深入研究螺旋流排气系统的工作机理,作者利用三维粒子动态分析仪(3 D P D A),对一始端螺旋流三分支模件的稳态湍流流场进行了测量,并用 A L E法进行了三维流动数值模拟。模拟结果与测量结果基本吻合,反映了模件流场的三维特征。 相似文献
9.
10.
根据螺旋槽管换热器结构特点及传热特性,建立了以水为工质的换热器流动与传热的三维几何模型。运用有限元分析软件ANSYS模拟出换热器在换热过程中速度场与温度场的状况,分别得到了螺旋槽管内壁与外壁的对流换热系数。结果表明:槽深越大,随着Re增大,换热性能越好;当Re较小时,螺距越大,换热效果降低。其与该类光管换热器相比,得出螺旋槽管的换热系数是光管的2.5倍左右,强化了传热,为此产品的进一步理论研究和推广应用提供了依据。 相似文献
11.
本文利用经改造过的KIVAII程序,采用非正交贴体网格方法对螺旋流排气系统始模件的流场进行了三维稳态计算,并与利用三维粒子运动分析仪(PDA)对其进准三维测量的结果相比较,计算结果与试验结果基本吻合,说明对程序的改造是成功的,并反映了模件流场的三维特征。 相似文献
12.
根据螺旋槽管的结构特点及传热特性,建立了三种不同槽口形状的螺旋槽管与光滑管换热器的三维模型。以水为工质,运用 Fluent流体分析软件,采用k-ε湍流模型,研究了三种不同槽口形状的螺旋槽管与光滑管换热器在换热过程中的速度场和温度场,得到了不同槽口形状和光滑管的壁面Nusselt数。结果表明。在相同壳程和雷诺数的情况下,螺旋槽管比光滑管的换热能力提高了6.7%-37.6%,其中三角彤槽和矩形槽螺旋槽管的换热能力提高最大,从而强化了传热。为谊产品的理论进一步研究和实验研究奠定了基础,为谊产品的设计和推广应用提供了依据。 相似文献
13.
14.
15.
基于扭曲椭圆管的换热器是一种新型的新风系统换热器,针对扭曲椭圆管及其应用特点,设计了两种不同结构参数的新风系统换热器。应用FLUENT软件,在夏季工况下对两种不同结构参数的新风系统换热器壳程进行模拟分析,并通过与实验数据的对比,验证计算模型的可靠性。结果显示在相同体积流量下,随着壳程开孔面积的增大,对流换热系数h不断减小,压降Δp不断减小,综合性能系数h/Δp1/3变化不明显;随着螺距的减小,对流换热系数h不断增大,压降Δp不断增大,综合性能系数h/Δp1/3也不断增大;流场分析显示,扭曲椭圆管换热器壳程流道内,呈现出明显沿着扭曲椭圆管壁面的螺旋流,使得空气在流道内充分扰动,增强换热效果。 相似文献
16.
17.
针对工程中常见的圆管流,采用切向引入装置使流体产生旋转流动,通过建立圆管螺旋流的三维模型,采用RNG-模型对管内流场进行了数值模拟,获得螺旋流的速度场以及强化传热特性。研究入口不同速度对强化传热性能的影响,为旋流强化传热装置的应用提供了必要的依据。 相似文献
18.
19.
采用SIMPLE算法模拟膜片管通道中的流动与换热,分析流场中出现的非线性现象以及不同管束排列方式对换热的影响。物理模型长度为185. 6 mm,高度为92. 8 mm,圆管直径为32 mm。烟气入口温度为400 K,上下两侧固体壁面温度为300 K。假设流动与换热进入充分发展阶段,雷诺数(Re)的取值范围是3 000~25 000,通入不同流速的烟气与两侧的壁面进行换热。结果表明:采用雷诺应力模型(RSM)所得的努塞尔数(Nu)与实验关联式结果最吻合,而且相对误差在5%~17%间;采用直接模拟(DNS)模拟时,稳态到非稳态的临界Re是100;在同一Re时,随着管间距减小,Nu是逐渐增加的,当Re取为25 000,管束水平间距和竖直间距均取为43. 2 mm时,通道换热能力达到最大且相应的Nu是195. 23。 相似文献
20.
以Fluent 6.3为平台,采用局部非热平衡模型,对紊流及紊流过渡区范围内骨架发热多孔介质竖直通道内的非达西强制对流换热进行了数值模拟。采用三维N-S方程及标准k-ε湍流模型描述多孔介质内的流动,详细研究了孔隙有效雷诺数Re(400Re2000),表面热流密度q(q=5、30和90 kW/m2)和冷却剂入口温度Tin(Tin=20、50和80℃)的变化对多孔介质流道内流动阻力及换热特性的影响。结果表明:低热流密度下,表面热流密度的变化对流动阻力和换热系数的影响很小;小球直径对换热系数的影响显著,且随着雷诺数的增加而增加;换热系数随冷却剂入口温度的增加而减小。 相似文献