首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
《Wear》1987,118(3):281-289
A critical review of the available literature on wear rate studies in an impactor system indicated that the particle size and shape both play an important role in erosion. A simple apparatus, normally used for the study of wear rate, was used to determine experimentally the particle size degradation for various impinging velocities at various numbers of impacts. A comminution model used in ball mill grinding systems was used with slight modifications. It was found that the model representation is adequate for the prediction of the attrited product size distribution.  相似文献   

2.
Y. Berthier  D. Play 《Wear》1982,75(2):369-387
Surface examination of dry oscillating bearings reveals three different contact zones and indicates that various frictional behaviours take place during the process. The relation between wear and applied conditions such as load and amplitude of oscillation is obscured by the complex behaviour of most frictional materials. Studies of initial destruction, transfer and elimination are easier with materials that show simple behaviour. Friction and wear are governed by load-carrying third bodies transported in the contact. Transport was confirmed during observation through a hollow glass ring rubbing on a chalk sector. Wear debris motion explains the manner in which geometry modification occurs with time. Circumferential debris transport due to ring motion is modified at the centre of the sector where transverse flow takes place. The initial O-shaped sector can change into an ω configuration. Thus the calculation of wear or of eliminated material must allow for the new ω shape. The new shape also controls bearing clearance. The effects of load and oscillating motion on wear parameters are presented. More than one wear mechanism can exist in a single contact.  相似文献   

3.
Study on transition between fretting and reciprocating sliding wear   总被引:2,自引:0,他引:2  
G. X. Chen  Z. R. Zhou   《Wear》2001,250(1-12):665-672
An experimental investigation was conducted to find the associated changes in characteristics of wear before and after the transition between fretting and reciprocating sliding wear. A set of experiments were carried out using a AISI 52100 steel ball rubbing against a plate specimen made from the same steel under dry condition. Wear coefficient, wear volume, coefficient of friction, profile of the scars and wear debris were analyzed. The results displayed that there were significant differences in wear coefficient, wear volume, profile of the wear scars and wear debris before and after the transition. Wear coefficient and wear volume at a constant sliding distance were found to be the most appropriate for identifying the transition amplitude between fretting and reciprocating sliding wear.  相似文献   

4.
J. Nordstr  m  J. Bergstr  m 《Wear》2001,250(1-12):19-27
Wear of saw teeth for timber cutting has been evaluated with the objective to establish an experimental method for saw steel development. Laboratory test results are compared to wear as determined in a case study. The case study was made on band saw tools, exhibiting abrasive, corrosive, cracking and chipping wear mechanisms. Laboratory tests were performed cutting pine wood using the martensitic saw steel grade, UHB 15LM, hardened and tempered to 1370 MPa tensile strength. The parameters, cutting speed, feed and depth, were chosen to be similar to saw mill conditions. A circular plate with two saw teeth was set up in a milling machine and each tooth was run a total cutting length of 10 000 m, equivalent to a normal 8 h work shift in a saw mill. Wear mechanisms were identified and characterised. The test method was found to simulate the saw mill conditions, and future wear studies using extreme cutting process parameters are possible.  相似文献   

5.
Longer tool life can be tentatively achieved at a higher feed rate using a small ball end mill in high spindle speed milling (over several tens of thousands of revolutions per minute), although the mechanism by which tool life is improved has not yet been clarified. In the present paper, the mechanism of tool wear is investigated with respect to the deviation in cutting force and the deflection of a ball end mill with two cutting edges. The vector loci of the cutting forces are shown to correlate strongly with wear on both cutting edges of ball end mills having various tool stiffnesses related to the tool length. The results clarified that tool life can be prolonged by reducing tool stiffness, because the cutting forces are balanced, resulting in even tool wear on both cutting edges as tool stiffness is lowered to almost the breakage limit of the end mill. A ball end mill with an optimal tool length showed significant improvement in tool life in the milling of forging die models.  相似文献   

6.
人工髋关节超高分子量聚乙烯(UHMWPE)关节面磨损仍是影响置换关节远期寿命的主要因素,其仿真建模是对关节模拟机磨损测试手段的重要补充,也是实现置换关节临床前性能评估的有效方法。由多向运动产生的交叉剪切效应是影响UHMWPE磨损的主要原因之一,也是仿真建模的关键。现有理论方法将磨损深度确定为滑动距离的函数,并将90°交叉剪切运动条件下的磨损作为度量基准计算不同角度下的交叉剪切效应,但尚未考虑接触应力变量对磨损深度的影响。针对以上问题,提出了在垂直交叉剪切运动条件下将磨损深度表示为摩擦功函数的方法。该方法利用UHMWPE摩擦因数与接触压力的定量关系计算摩擦因数并确定摩擦功,解决了UHMWPE磨损交叉剪切效应中滑动距离与接触应力的耦合问题。基于磨损仿真新模型研究了36 mm直径的交联UHMWPE髋关节,并与已有ProSim模拟机试验结果进行了验证。结果显示该仿真模型可准确计算体积磨损和线性磨损等磨损量以及髋关节载荷方向改变对磨损的影响。磨损新模型为进一步仿真模拟奠定了有效基础。  相似文献   

7.
Ball-cratering abrasion tests with large abrasive particles   总被引:1,自引:0,他引:1  
The application of a ball-cratering method to test three-body abrasive wear of bulk materials in the presence of large abrasive particles has been investigated. Four types of abrasive particles of different sharpness were used to make slurries: glass beads, silica sand, crushed quartz and alumina. All the particles were sieved to a size of 250–300 μm. Two common industrial materials, mild steel and 27% Cr white cast iron, were used as wear samples. Wear rates of metallic samples were determined and the worn surfaces were examined by optical microscopy, SEM and Talysurf profilometry.It was found that the surface roughness of the ball significantly affects the wear rates and the wear mechanisms of the metallic samples. The surface roughness of the ball steadily increased with testing time and was mainly affected by the angularity of abrasive particles. More angular particles generated higher ball surface roughness. It was found that the gradual increase in the ball surface roughness was responsible for non-linearity of wear rates with sliding time. The increasing depth of the wear craters also contributed to this non-linearity as deeper craters facilitate particle entrainment. Three-body rolling wear dominated when the ball was smooth and the contribution of two-body grooving wear increased with increasing the ball roughness. Softer mild steel samples were more affected by the ball roughness changes than the harder white cast iron samples. Wear surface morphology was also affected by the angularity of particles and by the material properties of wear samples. Particle fracture was found in all four groups of abrasives and the angularity of the particles was slightly altered. Therefore, the ball-cratering test, under the testing conditions used, can be considered as a high-stress abrasion test.  相似文献   

8.
As it is not feasible to apply operating results for grinding mills to other commercial plants, investigations were made in a laboratory mill to evaluate fineness, wear and energy consumption with different rocks, ores and wear materials. The wear process in a ball mill was analysed tribologically. Fineness, wear and specific energy consumption increase with mill speed. With increased feed rate there are decreases in fineness and energy consumption but the wear rate increases. The results of the laboratory tests may be applicable to commercial plants under certain circumstances.  相似文献   

9.
Tandon  K.N.  Feng  Z.C.  Li  X.Y. 《Tribology Letters》1999,6(2):113-122
Wear behavior of Al–Si alloys reinforced with SiC particulate has been investigated under dry and lubricated reciprocating sliding conditions using a ball-on-block wear test method. It was shown that in the dry sliding wear of the composite/steel ball system, the wear mechanism of the composite was predominantly adhesive. With further sliding motion, delamination and abrasive wear occurred as a result of fracture and debonding of the SiC particles. Under lubricated conditions, the wear rate of the composite was drastically reduced due to the presence of the lubricant, and a boundary lubrication condition existed and dominated the normal wear process. The debonding of the SiC particles from the matrix of the composite was a predominant factor in determining the wear loss of the composite in the boundary lubrication sliding process. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

10.
In this article, results of helical ball milling for hole making on Ti-6Al-4V alloy are presented and compared with drilling. Two different machining strategies were tested with a ball end mill. In the first strategy only a helical milling path was used to achieve the nominal diameter. The second strategy has two stages; first, helical milling considering a diameter 50 µm below the nominal, and second, the tool flank of the ball end mill were used to remove the stock left with a single contouring operation. Experimental tests were performed taking into account the process time, final quality of holes, hole diameter, roughness and burr formation at tool entrance and exit. With helical milling two advantages were concluded: the process is versatile because one tool is suitable for a range of diameters and negligible burrs are produced. However hardness in the zones close to hole internal surfaces machined with the ball end mill tool decreases with respect to twist drilling. The information obtained from this research work defines suitable cutting parameters for the helical milling process in the titanium alloy Ti-6Al-4V with ball end mills.  相似文献   

11.
Wear testing equipment and tests used in research laboratories are often miniature or simplified versions of real applications. For example standardized ASTM dry sand rubber wheel abrasion test G 65 and pin abrasion test G 132 are widely used to study materials’ abrasion wear resistance. The test results, however, do not always correlate too well with the results obtained from real wear conditions. One reason for this is, for example, that in the crushing applications of mining industry the abrasive size is usually much larger than that used in the laboratory wear tests. To study the abrasive wear caused by larger size gravel, new three-body abrasion test equipment was therefore constructed. The equipment uses the pin-on-disk principle with free abrasive particles of sizes up to 10 mm. During the test the pin is repeatedly pressed against a fixed amount of abrasive that is rotating with the disk having confining walls. As the pin is prevented from touching the counterbody, only the abrasive acts as the wearing agent.Three steels of different hardnesses were cross-tested as pin–disk pairs and as pins against a rubber disk using three igneous rock gravels with different crushability properties as abrasives. The wear was measured as mass loss from both the pin and the disk, and the rock comminution was measured by sieving. The results indicate that the mechanism of wear is greatly affected by the hardness of the counterbody. When using large size abrasives, the rate of comminution is also a very important factor that can significantly affect the wear test results.  相似文献   

12.
Wear test results are presented for a spherical indenter in reciprocal motion interacting with soft (aluminium alloy) and hard (construction steel) substrates. The aim of this paper is to provide evidence of the evolution of the contact zone, specification of wear scar depth and surface roughness in the contact zone. Numerical analysis of the interaction of the sliding sphere with the wear track provided contact zone dimensions, although these differed from the experimental data. The incremental wear factor is also introduced in the paper, while the formulae for the wear volume of the sphere recommended by ASTM have been improved.  相似文献   

13.
E. Albertin  A. Sinatora 《Wear》2001,250(1-12):492-501
The effect of carbide volume fraction from 13 to 41% on the wear resistance of high chromium cast irons was evaluated by means of ball mill testing. Martensitic, pearlitic and austenitic matrices were evaluated.

The 50-mm diameter balls were tested simultaneously in a 40 cm diameter ball mill. Hematite, phosphate rock and quartz sand were wet ground. The tests were conducted for 200 h.

Quartz sand caused the highest wear rates, ranging from 6.5 to 8.6 μm/h for the martensitic balls, while the wear rates observed for the phosphate rock ranged from 1.4 to 2.9 μm/h.

Increasing the carbide volume fraction resulted in decreased wear rates for the softer abrasives. The almost complete protection of the matrix by carbides in eutectic microstructures caused the eutectic alloy to present the best performance against hematite or phosphate rock. The opposite effect was observed for the quartz sand. The quartz abrasive rapidly wears out the matrix, continuously exposing and breaking carbide branches. A martensitic steel presented the best performance against the quartz abrasive.

With phosphate rock, the wear rate of 30% carbide cast irons increased from 1.46 to 2.84 and to 6.39 μm/h as the matrix changed, respectively, from martensitic to austenitic and to pearlitic. Wear profiles of worn balls showed that non-martensitic balls presented deep subsurface carbide cracking, due to matrix deformation. Similar behavior was observed in the tests with the other abrasives.

In pin-on-disc tests, austenitic samples performed better than the martensitic ones. This result shows that pin tests in the presence of retained austenite can be misleading.  相似文献   


14.
A range of ferrous grinding media compositions was subjected to laboratory marked ball wear tests in an ongoing research program at the Mineral Resources Research Center which was aimed at elucidating the responsible wear mechanisms during the grinding of minerals. Most of the wear data in this paper were obtained using a model quartz-pyrrhotite mineral slurry but these have been supplemented, where appropriate, with a small amount of data from wear tests on taconite ore and a Cu-Ni gabbroic ore. The role of abrasive and/or corrosive wear was determined by comparing the wear rates which result under a range of grinding atmospheres, i.e. O2, N2 or compressed air, flushing through a laboratory mill of 8 in diameter coupled with examination of ball surfaces after grinding using scanning electron microscopy.  相似文献   

15.
Ceramic wear maps   总被引:5,自引:0,他引:5  
S. M. Hsu  M. C. Shen 《Wear》1996,200(1-2):154-175
Ceramic wear maps have been developed to elucidate the complex interactions of the operating parameters, environments, and wear mechanisms. This paper summarizes these interactions for four ceramics, alumina, yttria-doped zirconia, silicon carbide and silicon nitride. Wear maps of these ceramics are systematically constructed using measured data under dry sliding, water, and paraffin lubricated conditions. For each material, different wear level regions acid wear transition zones are identified as a function of operating conditions and lubrication conditions. Wear mechanism studies performed within each wear region give rise to the wear mechanism maps. These maps facilitate material comparison and selection. The knowledge of wear, wear transitions, and wear mechanisms for a material pair enables realistic wear model development. One outcome of this approach is the recognition that a single wear model for a material pair cannot cover all operating conditions and environments.

As wear maps are constructed today, they are material pair specific. Within a material pair, there are microstructural dependence and surface properties influence. These parameters can change substantially for a given chemical composition of the material. How to incorporate these factors into the wear map research remains an issue. The search for a universal parameter such as the “asperity temperature” in Ashby's wear map continues in spite of mounting evidence that this may not be practical or feasible. But the hope remains that some parameters can be identified to normalize a large number of materials, operating conditions, and environments for tribological applications. Systematic wear maps are the first steps in this direction.  相似文献   


16.
将3种不同直径的氮化硅球坯采用循环加工方法研磨成G5级轴承用陶瓷球。研究了研磨过程中陶瓷球的磨损行为并将磨损缺陷按光学显微镜下的形貌分成5类。采用扫描电子显微镜观察分析各种缺陷并用陶瓷材料断裂力学解释凹坑与裂纹缺陷的形成。研究结果表明,异常的磨粒作为尖锐压头产生凹坑。各种裂纹主要是由起钝压头作用的上研磨盘产生的。材料的晶体结构变化产生雪花缺陷,雪花缺陷抵抗磨粒磨损的能力较差。精研过程中不正确的加工压力和没有破碎的硬磨粒产生擦伤和划痕缺陷。提高球坯圆度,降低粗研加工的载荷和速度可以减少裂纹缺陷。提高磨粒质量可以减少精研中各种机械加工缺陷。  相似文献   

17.
The relative significance of corrosive and abrasive wear in ore grinding is discussed. Laboratory marked ball wear tests were carried out with magnetic taconite and quartzite under different conditions, namely dry, wet and in the presence of an organic liquid. The effect of different modes of aeration and of pyrrhotite addition on the ball wear using mild steel, high carbon low alloy steel and austenitic stainless steel balls was evaluated. Results indicate that abrasive wear plays a significant role in ore grinding in the absence of sulfides, and rheological properties of the ore slurry influenced such wear. The effect of oxygen on corrosive wear becomes increasingly felt in the presence of a sulfide mineral such as pyrrhotite. Wear characteristics of the three types of ball materials under different grinding conditions are illustrated.  相似文献   

18.
A ball cratering test has been used to investigate the abrasive wear of high speed steels with different volume fraction and size of primary carbides. Three different abrasives, SiC, Al2O3 and ZrO2 were used. Wear mechanisms were investigated by scanning electron microscopy (SEM). A good correlation between the hardness of the abrasives and the abrasive wear coefficient was found. Higher abrasive wear resistance was determined for steels containing coarser primary carbides compared to those without or with smaller carbides. The most pronounced difference in abrasive wear resistance was found for Al2O3 abrasives. This indicates that in ball cratering the abrasive medium has to be chosen properly, i.e. with a hardness adjusted to those of both primary carbides and martensitic matrix, to obtain results suitable to rank high speed steels with respect to abrasion resistance.  相似文献   

19.
为提高球磨破碎效率,以及构建球磨装置的颗粒破碎过程模型,开展了基于单次料层冲击破碎质量模型的球磨选择函数研究。根据料层夹持形态与落球冲击试验,将料层破碎分为低冲击能下的未完全破碎和高冲击能量下的完全破碎两种状态。分析了单位质量能耗特性和细颗粒对夹持破碎质量的影响,分别建立了两种破碎状态下的料层冲击破碎质量模型。结合冲击能量谱,构建了基于单次料层冲击破碎质量模型的球磨选择函数,将介质球径、颗粒特性等影响球磨破碎效率的参数纳入到选择函数中。  相似文献   

20.
S.C. Godelier  A.A. Parry 《Wear》1978,48(2):369-384
The need to measure small amounts of wear during prototype testing is described and wear measurement using thin-layer activation techniques is discussed. Theoretical aspects are reviewed and predictions of activity as a function of wear depth are presented for graphites. Significant deviation from the simple theory occurs and two causes are identified: recoil of activated atoms and large-scale porosity in manufactured graphite. Calibration is necessary and results from experiments with two types of graphite are presented and compared with simple predictions. The calibration method is described, as are reciprocating wear experiments to test-the technique under realistic conditions. Results show that the initial sensitivity could be as good as 1 /gmm if suitable precautions are employed, limited by variations within one type of graphite and by experimental error. Wear depths of up to 160 μm may be measured depending on graphite density.The merits and disadvantages of the thin-layer activation technique are discussed. The technique has some unique advantages for wear measurements, but these must be set against the difficult experimental techniques, expense and the need to know where wear will occur. It is, however, a useful addition to the wear measurement methods available to tribologists.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号