首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Hydrothermal Synthesis of Cerium(IV) Oxide   总被引:2,自引:0,他引:2  
CeO2 powders have been prepared from cerium(III) nitrate, cerium(IV) sulfate, and cerium(IV) ammonium sulfate under hydrothermal conditions at 120° to 200°C for 5 to 40 h. The effects of the starting cerium compounds, hydrothermal treatment temperature, and the concentration of the solutions on the crystal growth of CeO2 were investigated. CeO2 powders hydrothermally synthesized at 180°C for 5 h from cerium(IV) salts had very fine particle sizes (30 Å); on the other hand, the powder from the cerium(III) salt had a relatively coarse particle size (160 Å). Although the crystallite size of the powder synthesized from the cerium(IV) compounds depended on the treatment temperature, that from the cerium(III) compound was insensitive to the treatment temperature. The mechanisms for the growth of CeO2 particles under hydrothermal conditions are discussed.  相似文献   

2.
Nanocrystalline cerium(IV) oxide (CeO2) powders have been prepared by adding hydrazine monohydrate to an aqueous solution of hydrous cerium nitrate (Ce(NO3)3·6H2O), followed by washing and drying. The lattice parameter of the as-prepared powder is a = 0.5415 nm. The powder characteristics and sinterability of reactive CeO2 have been studied. The surface areas of powders that have been heated at low temperatures are high, and these surface areas do not decrease to 10 m2/g until the temperature is >1200°C. Crystallite size and particle size are strongly dependent on the heating temperature. Optimum sintered densities are obtained by calcining in the temperature range of 700°–800°C. Ceramics with almost-full density can be fabricated at a temperature as low as 1150°C.  相似文献   

3.
A wet-chemical approach is applied to derive fine powders with compositions 11 mol% CeO2-ZrO2, 1 mol% YO1.5-10 mol% CeO2-ZrO2, 12 mol% CeO2-ZrO2, and 2 mol% YO1.5-10 mol% CeO2-ZrO2 by the coprecipitation method. The characteristics of the as-derived powders are evaluated through thermal analysis and electron microscopy. The sintering behavior of the calcined powders is carried out at 1400° and 1500°C for 1 to 10 h. Sintered density higher than 98% of theoretical is achieved for sintering at 1400°C for several hours. The as-sintered density dependence on the sintering condition is related to the extent of tetragonal-to-monoclinic phase transformation as well as the associated microcracks. Partial substitution by Y2O3 in CeO2-ZrO2 results in reduced grain size and tends to stabilize the tetragonal structure. Y2O3 is more effective than CeO2 with respect to the grain size refinement and tetragonal stability. In addition, Y2O3 substitution in CeO2-ZrO2 increases the hardness, while it decreases the fracture toughness.  相似文献   

4.
Hydrothermal Synthesis of Nanocrystalline Cerium(IV) Oxide Powders   总被引:5,自引:0,他引:5  
Nanocrystalline cerium(IV) oxide (CeO2) powders were prepared by heating solutions of cerium(IV) salts in the presence of urea under hydrothermal conditions at 120° to 180°C. The effects of the concentration of urea and hydrothermal treatment temperature on the morphology and crystallite size of the synthesized particles were investigated. The synthesized particles were angular, ultrafine CeO2, with a cubic fluorite structure. Their crystallite size decreased from 20 to 10 nm with increasing urea concentration from 2 times to 8 times that of the Ce4+ ion. The size only slightly changed by calcining at temperatures below 600°C.  相似文献   

5.
Reactive Ceria Nanopowders via Carbonate Precipitation   总被引:3,自引:0,他引:3  
Nanocrystalline CeO2 powders have been successfully synthesized via a carbonate precipitation method, using ammonium carbonate (AC) as the precipitant and cerium nitrate hexahydrate as the cerium source. The AC/Ce3+ molar ratio ( R ) affects significantly precursor properties, and spherical nanoparticles can be produced only in a narrow range of 2 < R ≤ 3. The precursor, having an approximate composition of Ce(OH)CO3·2.5H2O, decomposes to CeO2 at temperatures ≥300°C. The CeO2 powder calcined at 700°C exhibits high reactivity and can be densified to >99% of theoretical at 1000°C.  相似文献   

6.
Ultrafine 5.5 mol% CeO2—2 mol% YO1.5ZrO2 powders with controllable crystallite size were synthesized by two kinds of coprecipitation methods and subsequent crystallization treatment. The amorphous gel produced by ammonia coprecipitation and hydrothermal treatment at 200°C for 3.5 h results in an ultrafine powder with a surface area of 206 m2/g and a crystallite size of 4.8 nm. The powder produced by urea hydrolysis and calcination exhibits a purely tetragonal phase. In addition, the powders crystallized by hydrothermal treatment exhibit high packing density and can be sintered at lower temperature (,1400°C) with nearly 100% tetragonal phase achieved.  相似文献   

7.
Nanocrystalline CeO2 powders were prepared electrochemically by the cathodic electrogeneration of base, and their sintering behavior was investigated. X-ray diffraction and transmission electron microscopy revealed that the as-prepared powders were crystalline cerium(IV) oxide with the cubic fluorite structure. The lattice parameter of the electrogenerated material was 0.5419 nm. The powders consisted of nonaggregated, faceted particles. The average crystallite size was a function of the solution temperature. It increased from 10 nm at 29°C to 14 nm at 80°C. Consolidated powders were sintered in air at both a constant heating rate of 10°C/min and under isothermal conditions. The temperature at which sintering started (750°C) for nanocrystalline CeO2 powders was only about 100°C lower than that of coarser-grained powders (850°C). However, the sintering rate was enhanced. The temperature at which shrinkage stopped was 200°-300°C lower with the nanoscale powder than with micrometer-sized powders. A sintered specimen with 99.8% of theoretical density and a grain size of about 350 nm was obtained by sintering at 1300°C for 2 h.  相似文献   

8.
ZrO2–Al2O3 nanocrystalline powders have been synthesized by oxidizing ternary Zr2Al3C4 powders. The simultaneous oxidation of Al and Zr in Zr2Al3C4 results in homogeneous mixture of ZrO2 and Al2O3 at nanoscale. Bulk nano- and submicro-composites were prepared by hot-pressing as-oxidized powders at 1100°–1500°C. The composition and microstructure evolution during sintering was investigated by XRD, Raman spectroscopy, SEM, and TEM. The crystallite size of ZrO2 in the composites increased from 7.5 nm for as-oxidized powders to about 0.5 μm at 1500°C, while the tetragonal polymorph gradually converted to monolithic one with increasing crystallite size. The Al2O3 in the composites transformed from an amorphous phase in as oxidized powders to θ phase at 1100°C and α phase at higher temperatures. The hardness of the composite increased from 2.0 GPa at 1100°C to 13.5 GPa at 1400°C due to the increase of density.  相似文献   

9.
Amorphous CeO2–ZrO2 gels were prepared by coprecipitation in ammonia solutions. The onset of crystallization of the gels, from calcining in air, was 420°C, while 200° to 250°C in the presence of water and organic solvents such as methanol and ethanol. The sintering behaviors of CeO2–ZrO2 powders were sensitive to the crystallizing conditions, since hard agglomerates formed when the precipitated gels were crystallized by normal calcination in air, whereas soft agglomerates formed when they were crystallized in water or organic solvents. CeO2–ZrO2 powders crystallized in methanol and water at 250°C were sintered to full theoretical density at 1150° and 1400°C, respectively, whereas that crystallized by calcination in air at 450°C was sintered to only 95.2% of theoretical density, even at 1500°C.  相似文献   

10.
In this study, we report on the synthesis of nanopowders of ferroelectric Bi3.5Nd0.5Ti3O12 ceramic at temperatures below 500°C via a simple chemical method using citric acid as a solvent. The calcined powders were characterized using X-ray diffraction (XRD), differential scanning calorimetry (DSC), and transmission electron microscopy (TEM). Heating the as-dried powders in air first leads to crystallization of the Bi2Ti2O7 phase at ∼310°C, followed by crystallization of the perovskite Nd-doped Bi4Ti3O12 phase at ∼490°C as suggested by the peaks in the DSC analysis and confirmed by the evolution of phases in XRD patterns of the powders calcined at various temperatures. TEM of particles calcined at 550°C for 1 h in air showed an average particle size of 50–60 nm. The temperature dependence of capacitance of nanopowders calcined at 700°C for 1 h in air showed a Curie temperature of ∼615°C evincing a ferroelectric transition.  相似文献   

11.
Grain-oriented Bi2WO6 ceramics were fabricated by normal sintering techniques. Platelike crystallites were initially synthesized by a fused salt process using an NaCl-KCI melt. When calcined at <800°C, the Bi2WO6 crystallites are 3∼5 μ m in size and, at >850°C, =100 μm. After dissolving away the salt matrix, the Bi2WO6 particles were mixed with an organic binder and tapecast to align the platelike crystallites. Large particles were easily oriented by tapecasting but the sinterability of the tape was poor. Preferred orientation of small particles was increased by tapecasting and grain growth during sintering further improves the degree of orientation. Sintering above the 950°C phase transition, however, results in discontinuous grain growth and low densities. Optimum conditions for obtaining highly oriented ceramics with high density occur at sintering temperatures of 900°C using fine-grained powders which yield orientation factors of =0.88 and densities of 94% theoretical.  相似文献   

12.
The ionic conductivity of the ceria-samaria (CeO2-Sm2O3) system is higher than that of yttria-stabilized zirconia and other CeO2-based oxides. In this study, a small amount of alkali-element-doped CeO2-Sm2O3 solid solution was prepared. This solid solution was characterized by measuring the powder density and the chemical composition. Moreover, its electrochemical properties were investigated in the temperature range from 700° to 1000°C. It was found that a small amount of alkali-element-doped CeO2 solid solution enhanced the ionic conductivity. The power density of an oxygen-hydrogen fuel cell for alkali-element-doped CeO2-Sm2O3 ceramics exhibited high values at low temperatures such as 700° to 800°C. It is concluded that the improved fuel cell performance can be attributed to the high stability of this composition in the fuel atmosphere.  相似文献   

13.
Nanocrystalline strontium titanate (SrTiO3) particles were prepared using a peroxide-based route. The reaction between hydrogen peroxide and β-titanic acid yielded a peroxytitanic solution. An amorphous precipitate containing strontium and titanium was formed when a solution of strontium nitrate was added at pH 9. The precipitate was filtered, washed, and calcined. The precipitate was characterized by thermogravimetry, infrared spectroscopy, and X-ray diffraction. Powder calcined at temperatures of about 750°C within 1 h showed a well-crystallized cubic SrTiO3 perovskite phase. Applying this synthesis procedure for SrTiO3 nanoparticles yields powders with a grain size of nearly 50 nm.  相似文献   

14.
A precursor was synthesized from a heterogeneous alkoxide solution that contained fine MgO powder, which allowed the preparation of MgAl2O4 spinel powder with high sinterability characteristics. The precursor consisted of a mixture of boehmite (AlO(OH)) and a mixed hydroxide (Mg4Al2(OH)14· 3H2O). The spinel phase formed through two steps: (i) decomposition of the mixed hydroxide at low temperature and (ii) solid-state reaction between MgO and γ-Al2O3 at higher temperatures. Dense polycrystalline spinel could be obtained from the calcined powders at sintering temperatures as low as 1400°C.  相似文献   

15.
The high-T c superconducting material YBa2Cu3O7- x was synthesized using a modified amorphous citrate or oxalate process. Phase-pure superconducting powders were obtained by firing the citrate precursor to 900°C and the oxalate precursor to 950°C inflowing O2. The preparation is highly reproducible and leads to powders with excellent homogeneity and sinterability. The resulting material was examined by transmission electron microscopy, thermogravimetry, and X-ray diffraction. Particle sizes for the superconductors obtained varied from 75 to 3300 Å (7.5 to 330 nm).  相似文献   

16.
Fine hafnium diboride (HfB2) powders have been prepared by modified carbothermal/borothermal reduction of hafnium dioxide (HfO2) at relatively low temperatures (1500°–1600°C) for 1–2 h. The XRD patterns could be indexed as hexagonal HfB2 and no evidence of HfC, HfO2, or other impurities was observed. Glow discharge mass spectrometer analysis indicates that the synthesized HfB2 powders had high purity. The synthesized HfB2 powders had small average crystallite size (around 1 μm) and low oxygen content (<0.30 wt%). Scanning electron microscopy observation of the as-prepared powders demonstrated quasi-column morphology and laser particle size analysis showed monodispersity (polydispersity 0.005).  相似文献   

17.
Ultra-high-temperature ceramic composites of ZrB2 20 wt%SiC were pressureless sintered under an argon atmosphere. The starting ZrB2 powder was synthesized via the sol–gel method with a small crystallite size and a large specific surface area. Dry-pressed compacts using 4 wt% Mo as a sintering aid can be pressureless sintered to ∼97.7% theoretical density at 2250°C for 2 h. Vickers hardness and fracture toughness of the sintered ceramic composites were 14.82±0.25 GPa and 5.39±0.13 MPa·m1/2, respectively. In addition to the good sinterability of the ZrB2 powders, X-ray diffraction and scanning electron microscopy results showed that Mo formed a solid solution with ZrB2, which was believed to be beneficial for the densification process.  相似文献   

18.
A carbonate precursor of yttrium aluminum garnet (YAG) with an approximate composition of NH4AlY0.6(CO3)1.9(OH)2·0.9H2O was synthesized via a coprecipitation method from a mixed solution of ammonium aluminum sulfate and yttrium nitrate, using ammonium hydrogen carbonate as the precipitant. The precursor precipitate was characterized using chemical analysis, differential thermal analysis/thermogravimetry, X-ray diffractometry, and scanning electron microscopy. The sinterability of the YAG powders was evaluated by sintering at a constant rate of heating in air and vacuum sintering. The results showed that the precursor completely transforms to YAG at ∼1000°C via the formation of a yttrium aluminate perovskite (YAP) phase. YAG powders obtained by calcining the precursor at temperatures of ≤1200°C were highly sinterable and could be densified to transparency under vacuum at 1700°C in 1 h without additives.  相似文献   

19.
A novel co-precipitation process was adopted for the preparation of highly sinterable europium-doped lutetia powders using ammonium hydroxide (NH3·H2O) and ammonium hydrogen carbonate (NH4HCO3) as the mixed precipitant. The resultant powders calcined at 1000°C for 2 h showed good dispersity and excellent sinterability. Highly transparent polycrystalline lutetia ceramics with a relative density of ∼99.9% were fabricated by pressureless sintering in flowing H2 atmosphere at 1850°C for 6 h without any additives. The average grain sizes of the transparent material were estimated to be 50–60 μm. Optical in-line transmittance in the visible wavelength region for Lu2O3 ceramics (1 mm in thickness) reached 80%. The luminescence and decay behavior of the obtained transparent plate and the corresponding nanophosphors were also investigated.  相似文献   

20.
CeO2 ultrafine particles were prepared by solid-state reactions at room temperature. These particles were found to have very fine particle sizes (∼3 nm) with a fluorite structure ( a = 5.42 Å). BET measurements showed that the surface area of the particles was 96.2 m2/g. The use of two different precursors was found to affect the size of the CeO2 particles. We discuss the effect of calcination at different temperatures on the morphology, size, and BET surface area of CeO2 particles. A salt byproduct coating prevented agglomeration of the CeO2 particles.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号