首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A CDMA receiver with enhanced multiple access interference (MAI) suppressionis proposed for a pilot symbols assisted system over multipath channels. Thedesign of the receiver involves the following procedure. First, blind adaptivecorrelators are constructed at different fingers based on the scheme ofgeneralized sidelobe canceller (GSC) to collect the multipath signals andsuppress MAI. A low-complexity partially adaptive (PA) realization of the GSCcorrelators is proposed which incorporates multi-user information for reducedrank processing. By a judiciously designed decorrelating procedure, a new GSCstructure is obtained in which the MAI are decorrelated and suppressedindividually. The next step is then a simple coherent combining of thecorrelator outputs with pilot aided channel estimation. Finally, furtherperformance enhancement is achieved by an iterative scheme in which the signalis reconstructed and subtracted from the GSC correlators input data, leadingto faster convergence of the receiver. The proposed low-complexity PA CDMAmulti-user receiver is shown to be robust to multipath fading and channelerrors, and achieve nearly the same performance of the ideal maximum SINR andMMSE receivers by using a small number of pilot symbols.  相似文献   

2.
This paper proposes several blind adaptive receivers to eliminate multiple-access interference (MAI), intersymbol interference (ISI), and interchip interference (ICI) in direct-sequence code-division multiple access (DS/CDMA) downlink multiuser systems. We use the following concepts to formulate the cost function: 1) the variance of the despreading output approaches to the variance of the desired signal and 2) the discreteness property of the input signal. The proposed approaches are called variance-oriented approaches (VOAs). The VOA is then applied to three proposed receiver structures, especially the generalized sidelobe canceller (GSC) scheme that is generally the concept of spatial domain in beamforming system, to eliminate the MAI by one particular constraint in temporal domain. Besides, by this constraint, GSC filter possesses the property of global convergence in multipath environment once the channel estimation is appropriate. Simulation examples are shown to demonstrate the effectiveness and comparison of the proposed blind adaptive receivers.  相似文献   

3.
The paper deals with the problem of blind mitigation of intersymbol interference (ISI) as well as multiple-access interference (MAI) in asynchronous high data-rate direct-sequence code-division multiple-access systems. A blind adaptive multiuser receiver based on the constant-modulus algorithm (CMA) is proposed, which demodulates each desired user by exploiting only the knowledge of its spreading code, without requiring estimation of the users's channels and timings. In order to overcome the CMA interference capture problem, which arises in a multiuser scenario, a two-stage adaptive receiver is adopted: In the first stage, partial MAI and ISI suppression is blindly achieved by exploiting the desired user signature structure properties; in the second stage, the residual MAI and the ISI are removed by using the CMA, and the information symbols of the desired user are reliably recovered. Theoretical analysis and simulation results show that the first stage is an effective blind adaptive strategy which allows the CMA detector in the second stage to lock on the desired-user symbol, at a particular delay. The proposed blind receiver achieves a significant performance gain in comparison with existing blind methods.  相似文献   

4.
We propose a decentralized space-time multiuser detection scheme based on the notion of canonical space-time coordinates (CSTCs) for representing the received signal. The CSTC representation provides a natural framework for decentralized multi-access interference (MAI) suppression in lower dimensional subspaces that results in complexity reduction relative to existing chip rate filtering schemes. The framework is based on a partitioning of the signal space into active and inactive CSTCs. The active CSTCs contain the signal of the desired user, facilitate maximal diversity exploitation and minimal complexity interference suppression. The inactive CSTCs only contain MAI and can be included progressively to attain a desired level of MAI suppression at the cost of increased complexity. We develop CSTC-based linear coherent multiuser detectors using the linearly constrained minimum variance (LCMV) criterion. We characterize the set of inactive coordinates and analyze the performance of the LCMV receiver as a function of the number of inactive CSTCs. Channel estimation and detector sensitivity to channel estimation errors are discussed. We demonstrate that the low-complexity adaptive receivers designed via the CSTC framework are more robust to channel estimation errors than existing chip-domain filtering schemes  相似文献   

5.
Theoretical error rate performance of wireless communication systems are usually determined assuming that the perfect channel state information (CSI) is available at the receiver. However, in actual practice, the channel gains at the receiver are obtained via using some channel estimation (CE) techniques. Due to inherent presence of noise, the CE is not perfect resulting in the performance degradation. In this paper, we evaluate the error rate performance of an uplink multicarrier code-division multiple-access (MC-CDMA) system, considering different modulation techniques, where CE is performed using pilot symbol assisted (PSA) minimum mean-square error (MMSE) CE technique. The symbol error rate (SER) analysis of an uplink MC-CDMA system using multiuser detection techniques, such as MMSE and zero forcing (ZF), is presented under imperfect CE. Simulated results for SER are also shown to confirm the accuracy of the analytically derived results.  相似文献   

6.
This article proposes an improved generalized side-lobe canceller(GSC)receiver structure based on a new group constraint,which is suitable to eliminate multiple-access interference(MAI),inter-symbol interference(ISI)in direct-sequence code-division multiple access(DS/CDMA)downlink multi-user system.The new group constraint is deduced to construct the group-blind adaptive multi-user detector.The analysis indicates that the improved GSC under the new constraint not only retains the property of suppressing ISI and canceling MAI,but also can extract useful information from the succeeding bit for the desired user.The simulations show that the improved GSC filter can cancel the MAI efficiently whether the wireless channel length is short or long,and achieve better performance than other compared filters.  相似文献   

7.
We consider the design of optimal multiuser receivers for space-time block coded (STBC) multicarrier code-division multiple-access (MC-CDMA) systems in unknown frequency-selective fading channels. Under a Bayesian framework, the proposed multiuser receiver is based on the Gibbs sampler, a Markov chain Monte Carlo (MCMC) method for numerically computing the marginal a posteriori probabilities of different users' data symbols. By exploiting the orthogonality property of the STBC and the multicarrier modulation, the computational complexity of the receiver is significantly reduced. Furthermore, being a soft-input soft-output algorithm, the Bayesian Monte Carlo multiuser detector is capable of exchanging the so-called extrinsic information with the maximum a posteriori (MAP) outer channel code decoders of all users, and successively improving the overall receiver performance. Several practical issues, such as testing the convergence of the Gibbs sampler in fading channel applications, resolving the phase ambiguity as well as the antenna ambiguity, and adapting the proposed receiver to multirate MC-CDMA systems, are also discussed. Finally, the performance of the Bayesian Monte Carlo multiuser receiver is demonstrated through computer simulations  相似文献   

8.
在DS—CDMA系统中,联合译码的迭代多用户检测是克服多址干扰增加系统容量的有效方法。本文将多用户检测和译码相结合的迭代检测技术应用于MC—CDMA系统,其中,多用户检测器由串行干扰消除和其后的MMSE滤波器组成。文中提出一种时域信道估计作为迭代初始值的频域信道估计算法,比单纯的频域信道估计方法节约导频符号数量,并且由于信道估计性能的改善,加快了迭代检测的收敛速度。  相似文献   

9.
A blind adaptive technique for signal demodulation in multipath code-division multiple-access (CDMA) communication channels is proposed. This technique is based on signal subspace estimation. The receiver employs a bank of linear filters (decorrelating filters or linear MMSE filters) at the front end to mitigate the multiple-access interference and the multipath interference. A channel estimator is used to estimate the channel state for diversity combining. It is shown that through the use of signal subspace estimation, both the decorrelating filterbank and the linear MMSE filterbank can be obtained blindly, i.e., they can be estimated from the received signal with the prior knowledge of only the signature waveform of the desired user. Two forms of the subspace-based linear filterbanks are developed and their equivalence in terms of the interference suppression capability is established. These subspace-based blind adaptive interference suppression techniques require, at each symbol epoch, the eigenvalues and the eigenvectors of an appropriate signal subspace, which ran be obtained using computationally efficient sequential adaptive eigendecomposition (subspace tracking) algorithms. Moreover, a blind adaptive method for estimating the channel state is developed, which also produces the postcombining decision statistic as a byproduct  相似文献   

10.
Parallel Interference Cancellation in Multiuser CDMA Channel Estimation   总被引:1,自引:0,他引:1  
Parallel interference cancellation (PIC) based channel parameter estimators for frequency selective fading channels are proposed for the uplink in code-division multiple-access (CDMA) mobile communication systems. The performance of PIC based algorithms depends heavily on the quality of the multiple-access interference estimates, which can be improved by using adaptive channel estimation filters. The performance of two adaptive complex channel coefficient estimation filters has been verified in a fading channel by computer simulations. According to the results, the PIC based adaptive channel estimators outperform clearly conventional, successive interference cancellation, and decorrelation based adaptive channel estimators. The PIC method is also used in delay tracking. By using the principles of sample-correlate-choose-largest (SCCL) delay trackers, a robust algorithm for multiuser delay tracking in fading channels is obtained.  相似文献   

11.
The presence of both multiple-access interference (MAI) and intersymbol interference (ISI) constitutes a major impediment to reliable communications in multipath code-division multiple-access (CDMA) channels. In this paper, an iterative receiver structure is proposed for decoding multiuser information data in a convolutionally coded asynchronous multipath DS-CDMA system. The receiver performs two successive soft-output decisions, achieved by a soft-input soft-output (SISO) multiuser detector and a bank of single-user SISO channel decoders, through an iterative process. At each iteration, extrinsic information is extracted from detection and decoding stages and is then used as a priori information in the next iteration, just as in turbo decoding. Given the multipath CDMA channel model, a direct implementation of a sliding-window SISO multiuser detector has a prohibitive computational complexity. A low-complexity SISO multiuser detector is developed based on a novel nonlinear interference suppression technique, which makes use of both soft interference cancellation and instantaneous linear minimum mean-square error filtering. The properties of such a nonlinear interference suppressor are examined, and an efficient recursive implementation is derived. Simulation results demonstrate that the proposed low complexity iterative receiver structure for interference suppression and decoding offers significant performance gain over the traditional noniterative receiver structure. Moreover, at high signal-to-noise ratio, the detrimental effects of MAI and ISI in the channel can almost be completely overcome by iterative processing, and single-user performance can be approached  相似文献   

12.
The problem of blind demodulation of multiuser information symbols in a high-rate code-division multiple-access (CDMA) network in the presence of both multiple-access interference (MAI) and intersymbol interference (ISI) is considered. The dispersive CDMA channel is first cast into a multiple-input multiple-output (MIMO) signal model framework. By applying the theory of blind MIMO channel identification and equalization, it is then shown that under certain conditions the multiuser information symbols can be recovered without any prior knowledge of the channel or the users' signature waveforms (including the desired user's signature waveform), although the algorithmic complexity of such an approach is prohibitively high. However, in practice, the signature waveform of the user of interest is always available at the receiver. It is shown that by incorporating this knowledge, the impulse response of each user's dispersive channel can be identified using a subspace method. It is further shown that based on the identified signal subspace parameters and the channel response, two linear detectors that are capable of suppressing both MAI and ISI, i.e., a zero-forcing detector and a minimum-mean-square-error (MMSE) detector, can be constructed in closed form, at almost no extra computational cost. Data detection can then be furnished by applying these linear detectors (obtained blindly) to the received signal. The major contribution of this paper is the development of these subspace-based blind techniques for joint suppression of MAI and ISI in the dispersive CDMA channels  相似文献   

13.
Kalman filtering has been proposed in the literature for wireless channel estimation, however, it is not sufficiently robust to uncertainties in the channel auto-correlation model as well as to multiple access interference (MAI). This paper presents a receiver structure for direct-sequence code-division multiple-access (DS-CDMA) systems by using robust Kalman estimation and post-correlation (i.e., symbol rate) processing for channel estimation. The proposed structure is also generalized to incorporate multiple-antenna combining and interference cancellation techniques. The resulting receiver outperforms earlier structures in the presence of channel modeling uncertainties, MAI, and low-received signal-to-noise ratio. The enhancement in performance is achieved at the same order of complexity as a standard Kalman-based receiver.  相似文献   

14.
In this paper, the uplink of an asynchronous multi-carrier direct-sequence code-division multiple-access (MC-DS-CDMA) system with multiple antennas at both the transmitter and the receiver is considered. We analyze the system performance over a spatially correlated Rayleigh fading channel with multiple-access interference (MAI), and evaluate the antenna array performance with joint fading reduction and MAI suppression. Assuming perfect channel knowledge available at the transmitter, maximal ratio transmission is employed to weight the transmitted signal optimally in terms of combating signal fading. At the receiver, adaptive beamforming reception is adopted to both suppress MAI and combat the fading. Note that while correlations among the fades of the antennas in the receive array reduce the diversity gain against fading, the array still has the capability for interference suppression. We examine the effect of varying the number of transmit and receive antennas on both the diversity gain and the interference suppression.  相似文献   

15.
A soft iterative multisensor array receiver for coded multiuser wideband code-division multiple-access wireless uplink channels is proposed, such channels are typically both frequency- and time-selective. A new equivalent discrete-time synchronous representation is used to model asynchronous multiuser dispersive channels that employ, in general, random spreading. The proposed scheme suppresses multiuser interference over a wide range of user signal powers, by iteratively exchanging soft information between a minimum mean-square-error (MMSE) multiuser demodulator and a bank of single-user decoders, feeding back the outputs of the latter to aid in soft multiuser multisensor MMSE-RAKE demodulation and subtractive interference cancellation, in the second and subsequent iterations. It displays near-far resistance since it behaves like a successive interference subtracter across iterations. The array responses are obtained via a multipass estimation scheme that uses both (temporal) pilot symbols and soft estimates fed back from the decoders to effectively provide multisymbol pilot signals and thence successively refined estimates with increasing iterations, while seeking neither to rely on the array geometry nor to estimate the directions from which users' signals arrive at the receiver. Simulation studies indicate that this scheme performs close to the single-user case with a two-sensor receiver array, and perfect channel state information, after four iterations; alternatively, it allows significantly increased user capacity compared with conventional receivers, and suffers only a modest loss with estimated array responses  相似文献   

16.
研究了多载波码分多址(MC-CDMA)系统的盲干扰抑制,采用基于空时分组码的发射分集。考虑对应于子载波的衰落系数是信道冲激响应的离散傅里叶变换,通过研究多径信号频域码空间和数据矢量空间,采用噪声子空间技术进行盲信道估计。为了抑制多址干扰(MAI),提出一种基于投影的辅助矢量算法(PAV),该算法计算复杂度低,在低输入信号干扰噪声比(SINR)时能提供有效的干扰抑制,在高输入SINR时具有稳健的性能。  相似文献   

17.
Multiple-Access Interference Suppression for MC-CDMA by Frequency-Domain Oversampling A technique for interference suppression in multicarrier code-division multiple-access (MC-CDMA) systems is proposed which exploits the structural differences in signals that arrive at the receiver with Doppler shifts or carrier offsets. Oversampling the received signal in the frequency domain and properly combining the samples provides the interference suppression. Frequency-domain oversampling is accomplished by using a time extension of the conventional MC-CDMA signal or unconsumed portions of the cyclic prefix. Furthermore, a receiver structure is introduced that despreads and combines groups of samples so that a linear minimum mean-squared error solution for combining the groups is easily found. This combining scheme increases the signal-to-interference ratio experienced by the desired user in the MC-CDMA system. In addition, the receiver performs as well in severe near–far scenarios when there is sufficient frequency separation between the signals of the desired user and an interferer. Numerical results show that the proposed receiver significantly outperforms the conventional MC-CDMA receiver in many channel realizations.  相似文献   

18.
Multiple-access interference (MAI) and time-varying multipath effects are the two most significant factors limiting the performance of code-division multiple-access (CDMA) systems. While multipath effects are exploited in existing CDMA systems to combat fading, they are often considered a nuisance to MAI suppression. We propose an integrated framework based on canonical multipath-Doppler coordinates that exploits channel dispersion effects for MAI suppression. The canonical coordinates are defined by a fixed basis derived from a fundamental characterization of the propagation effects. The basis corresponds to uniformly spaced multipath delays and Doppler shifts of the signaling waveform that capture the essential degrees of freedom in the received signal and eliminate the need for estimating arbitrary delays and Doppler shifts. The framework builds on the notion of active coordinates that carry the desired signal energy, facilitate maximal exploitation of channel diversity, and provide minimum-complexity MAI suppression. Progressively powerful multiuser detectors are obtained by incorporating additional inactive coordinates carrying only MAI. Signal space partitioning in terms of active/inactive coordinates provides a direct handle on controlling receiver complexity to achieve a desired level of performance. System performance is analyzed for two characteristic time scales relative to the coherence time of the channel. Adaptive receiver structures are identified that are naturally amenable to blind implementations requiring knowledge of only the spreading code of the desired user.  相似文献   

19.
MC-CDMA上行链路盲多用户检测技术研究   总被引:1,自引:1,他引:0  
文中提出一种在异步多径瑞利衰落MC-CDMA系统上行链路中改进型的仿射投影算法。利用盲信号空间分离的方法,将期望用户的信道信息估计出来,再将其结果作为参数带入到改进型仿射投影滤波器中。在权向量更新的过程中,抵抗多址干扰(MAI)的影响,将期望用户的信息可靠的恢复。计算机仿真显示,在考虑远近效应时,该盲算法的性能与非盲的最小均方误差接收器的性能接近。  相似文献   

20.
The degradation in bit error rate due to the presence of multiple-access interference in a white Gaussian channel can be measured by the multiuser asymptotic efficiency, defined as the ratio between the SNR required to achieve the same uncoded bit error rate in the absence of interfering users and the actual SNR. In this paper, the asymptotic efficiency of the optimum multiuser demodulator (a bank of matched filters followed by a Viterbi algorithm) is investigated and compared to that of the conventional single-user matched filter receiver. The computation of the optimum asymptotic efficiency of any given user is equivalent to the minimization of the Euclidean distance between any pair of multiuser signals which differ in at least one of the symbols of that user. It is shown that the optimum multiuser efficiency of asynchronous systems is nonzero with probability 1, and therefore the optimum demodulator does not become multiple-access limited in contrast to the single-user receiver. A class of signal constellations with moderate cross-correlation requirements is shown to achieve unit optimum multiuser efficiencies and, hence, to be equivalent to orthogonal signal sets from the viewpoint of performance of the optimum multiuser detector.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号