首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到5条相似文献,搜索用时 0 毫秒
1.
We compared surface passivation of c-Si by a-Si:H with and without atomic hydrogen treatment prior to a-Si:H deposition. The atomic hydrogen is produced by hot-wire chemical vapor deposition (HWCVD). For this purpose, we deposited a-Si:H layers onto both sides of n-type FZ c-Si wafers and measured the minority carrier effective lifetime and implied VOC for different H treatment times ranging from 5 s to 30 s prior to a-Si:H deposition. We found that increasing hydrogen treatment times led to lower effective lifetimes and implied VOC values for the used conditions. The treatments have been performed in a new virgin chamber to exclude Si deposition from the chamber walls. Our results show that a short atomic hydrogen pretreatment is already detrimental for the passivation quality which might be due to the creation of defects in the c-Si. AFM measurements do not show any change in the surface roughness of the different samples.  相似文献   

2.
Epitaxial 3C-SiC(1 1 1) films were grown on 6H-SiC(0 0 0 1) Si face on axis substrates by chemical vapor deposition under H2, SiH4 and C3H8 in a cold wall vertical reactor. Two temperatures were studied (1450 and 1700 °C) with various C/Si ratio and deposition time. It was found that under conditions giving high lateral growth (low C/Si and/or high temperature), homoepitaxial growth occurred even at temperatures as low as 1450 °C. For other conditions, the 3C-SiC polytype was detected and always together with the formation of double positioning boundaries whose density was found to depend on the growth conditions but not on the initial surface reconstruction. Single domain enlargement was observed when growth was performed at 1700 °C over a nucleation layer grown at 1450 °C.  相似文献   

3.
ZnO thin films were prepared on Si(0 0 1) substrates using a pulsed laser deposition (PLD) technique and then their growth and properties were investigated particularly as a function of ambient O2 pressure during film growth. It was found that the microstructure, crystallinity, orientation and optical properties of the films grown are strongly dependent on the O2 pressures used. Completely c-axis oriented ZnO films are grown in a low O2 pressure regime (5×10−4-5×10−2 Torr), whereas a randomly oriented film with a much lower crystallinity and a rougher grained-surface is grown at an O2 pressure of 5×10−1 Torr. This deterioration in film quality may be associated with the kinetics of atomic arrangements during deposition. Our results suggest that ambient O2 pressure is an important processing parameter and should be optimized in a narrow regime in order to grow a ZnO film of good properties in PLD process.  相似文献   

4.
We report on the selective area growth of GaN nanowires (NWs) on nano-patterned Si(111) substrates by metalorganic chemical vapor deposition. The nano-patterns were fabricated by the oxidation of Si followed by the etching process of Au nano-droplets. The size of formed nano-pattern on Si(111) substrate was corresponding to the size of Au nano-droplet, and the diameter of GaN NWs grown was similar to the diameter of fabricated nano-pattern. The interesting phenomenon of using the nano-patterned Si(111) substrates is the formation of very clear substrate surface even after the growth of GaN NWs. However, in the case of GaN NWs grown using Au nano-droplets, there was several nanoparticles including GaN bulk grains on the Si(111) substrates. The smooth surface morphology of nano-patterned Si(111) substrates was attributed to the presence of SiO2 layer which prevents the formation of unnecessary GaN particles during the GaN NW growth. Therefore, we believe that nano-patterning method of Si(111) which was obtained by the oxidation of Si(111) substrate and subsequent Au etching process can be utilized to grow high-quality GaN NWs and its related nano-device applications.  相似文献   

5.
A comprehensive study of atomic hydrogen chemisorption on the Si(1 1 1) √3 × √3R30 ° -Al, -Ga and -B cluster modelled surfaces is presented using Hartree-Fock/density functional theory methods. Extrapolation of the results to the extended (1 1 1) silicon surface is also discussed. It is found that the chemisorption of hydrogen on the Al and Ga terminated surfaces induces a transition from the √3 × √3 structure to a local 1 × 1: H-like reconstruction with a stable SiAl (or SiGa) sites. The subsurface boron induced √3 × √3 reconstruction is also lifted by hydrogen chemisorption but, in this case, boron adatoms are likely to be segregated on the surface, predominantly as BH or/and BH2.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号