首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到16条相似文献,搜索用时 78 毫秒
1.
李之锋  罗垂意  王春香  钟盛文  张骞 《材料导报》2018,32(14):2329-2334, 2339
以硫酸盐为原料,采用共沉淀-固相反应法成功制备了LiNi_(0.7)Mn_(0.3)O_(2-x)F_x(x=0,0.01,0.02,0.03)正极材料。采用X射线衍射仪(XRD)、扫描电子显微镜(SEM)、X射线光电子能谱(XPS)、电化学阻抗谱(EIS)、循环伏安法(CV)、充放电测试等系统地研究了F掺杂对无钴镍基正极材料LiNi_(0.7)Mn_(0.3)O_(2-x)F_x(x=0,0.01,0.02,0.03)结构和电化学性能的影响。X射线衍射结果表明,所有样品均具有典型的α-NaFeO_2层状结构,随着F掺杂量的增加,材料晶胞体积逐渐增大;扫描电镜结果显示,F掺入使材料的一次颗粒形状更加规则、均匀、致密,且尺寸更大、结晶度更高。X射线光电子能谱(XPS)测试结果表明,F掺入之后,材料中二价镍的含量增加,其他元素的化合价保持不变。电化学阻抗谱(EIS)和循环伏安(CV)曲线数据证实掺适量F可以减小电池的电化学转移内阻(Rct)和电极的极化作用。F掺杂虽然减小了材料的首次放电容量,但提高了材料的首次库伦效率和循环稳定性。  相似文献   

2.
为改善LiNi_(0.5)Co_(0.2)Mn_(0.3)O_2正极材料的电化学性能,采用自制的磷酸铁纳米悬浮液,通过共沉淀法在LiNi_(0.5)Co_(0.2)Mn_(0.3)O_2正极材料表面包覆纳米磷酸铁。应用XRD,TG-DTA,TEM等手段表征制备的磷酸铁的结构,形貌和液相状态;通过XRD,SEM,EDS,TEM,ICP,恒流充放电、循环伏安、交流阻抗表征制备的包覆材料的结构、形貌及电化学性能。研究烧结温度和包覆量对LiNi_(0.5)Co_(0.2)Mn_(0.3)O_2正极材料电化学性能的影响。结果表明,热处理温度为400℃,2%(质量分数,下同)磷酸铁包覆能显著地改善LiNi_(0.5)Co_(0.2)Mn_(0.3)O_2正极材料的循环性能和倍率性能。循环伏安和交流阻抗结果显示,包覆磷酸铁后改善了LiNi_(0.5)Co_(0.2)Mn_(0.3)O_2正极材料的可逆性和动力学性能。ICP测试结果表明,磷酸铁包覆层能够有效地降低电解液对正极材料的溶解与侵蚀,稳定其层状结构,从而提高正极材料的电化学性能。  相似文献   

3.
采用化学共沉淀法制备球形前驱体Ni_(0.7)Co_(0.15)Mn_(0.15)(OH)_2,将其与LiOH·H_2O充分混合后高温烧结制备出锂离子电池正极材料球形LiNi_(0.7)Co_(0.15)Mn_(0.15)O_2,用X射线衍射(XRD)、扫描电镜(SEM)、热重-差热分析(TG/DSC)以及恒电流充放电测试对样品进行表征,研究了烧结温度对产物的形貌和电化学性能的影响。结果表明,在750℃合成的LiNi_(0.7)Co_(0.15)Mn_(0.15)O_2物相单一无杂相,具有标准的α-NaFeO_2晶型,为层状嵌锂复合氧化物。SEM测试显示,产物为球形且球形度较好,颗粒粒度均一,分布较窄,平均粒径在10μm左右。在3.0-4.3 V、0.2C充放电条件下,25℃其初始放电容量高达185.2 mA·h/g,30轮循环后容量保持率达到98.32%。可见球形LiNi_(0.7)Co_(0.15)Mn_(0.15)O_2显示了较高的首轮放电容量以及良好的循环性能,表现出较好的电化学性能。  相似文献   

4.
采用差示扫描量热仪(DSC)分析了不同正极材料LiNi0.7Co0.1Mn0.2O2和LiNi0.55Co0.1Mn0.35O2的热稳定性,结果表明,LiNi0.55Co0.1Mn0.35O2具有更好的热稳定性,说明镍含量越高,正极材料的热稳定性越差。通过扫描电镜(SEM)和X射线衍射仪(XRD)分别表征了DSC测试后两种正极材料的形貌和结构变化。其中LiNi0.7Co0.1Mn0.2O2材料经高温加热后其颗粒明显破碎,XRD结果表明正极材料在高温加热时发生了分解,产生了镍的氧化物。通过加速量热仪(ARC)测试电池热稳定性证明,正极材料的热稳定性差直接导致电池的热稳定性也较差。为了提高电池耐高温安全性能,必须选择热稳定性好的材料。  相似文献   

5.
锂离子电池正极材料LiNi_(1/3)Co_(1/3)Mn_(1/3)O_2的制备与表征   总被引:1,自引:0,他引:1  
以乙酸锂、硝酸镍、硝酸钴和乙酸锰为原料,通过高温固相法,分别采用一次烧结和二次烧结合成了LiNi1/3Co1/3Mn1/3O2。采用X射线衍射、扫描电镜分析以及电化学测试等手段对LiNi1/3Co1/3Mn1/3O2的微观结构、表面形貌和电化学性能进行了研究。结果表明,高温固相法能得到结晶良好的LiNi1/3Co1/3Mn1/3O2,但二次烧结提高了材料的I(003)/I(104)值,降低了c/a值,得到的LiNi1/3Co1/3Mn1/3O2具有更完善的层状结构和更优良的电化学性能。  相似文献   

6.
许惠  钟辉 《无机材料学报》2004,19(3):497-502
以Co0.3Ni0.7(OH)2和LiOH.H2O为原料,在含羟基的有机溶剂水溶液中浸渍呈流变相,用喷雾干燥后于空气中在不同的温度下煅烧16h制备层状LiCo0.3Ni0.7O2正极材料,用XRD、TG-DTA、SEM以及激光粒度测试等表征了材料的晶体结构与理化性能.结果表明,由本法可降低样品合成的反应温度和对反应气氛的严格要求,制备出的样品可有效抑制材料中阳离子混排及非化学计量产物的出现,大大降低材料的首次不可逆放电容量,提高材料的首次放电效率.经700°C煅烧16h合成出的样品首次放电容量达172mAh/g,首次放电效率可达90.8%,循环40次后容量仅衰减9%,显示出优良的电化学性能.  相似文献   

7.
采用水热法制备LiNi1/3Co1/3Mn1/3O2,研究了在合成过程中添加不同表面活性剂对锂离子电池正极材料LiNi1/3Co1/3Mn1/3O2电化学性能的影响。利用XRD和SEM对其结构和形貌进行表征,并采用循环伏安、交流阻抗、恒流充放电测试其电化学性能。结果表明,均合成了LiNi1/3Co1/3Mn1/3O2,其中用十二烷基苯磺酸钠合成的样品电化学性能较好,在C/2倍率的放电条件下,首次比容量达到143.8mAh/g,经过100次循环后,比容量保持为106.8mAh/g,容量保持率为74.3%。  相似文献   

8.
采用溶胶-凝胶法,通过控制Na/(Mn+Co)投料比,合成了层状P2结构的Nax Mn0.7Co0.3O2;以NaxMn0.7Co0.3O2 为前驱体,经离子交换反应得到层状O2结构LixMn0.7Co0.3O2,锂含量x达到0.9.电化学性能测试表明,随着锂含量的增加,可逆比容量逐渐增大,首次充电不可逆容量也明显增大,其中以Li0.9Mn0.7Co0.3O2的可逆比容量及首次不可逆比容量最高,且保持了良好的电化学循环稳定性.  相似文献   

9.
采用溶胶-凝胶法制备了尖晶石型LiNi0.5Mn1.5O4及其掺杂材料LiMn1.4Ni0.55Mo0.05O4,并采用电化学阻抗(EIS)研究了材料充电态的锂离子嵌脱动力学。结果表明,Mo的掺杂降低了LiNi0.5Mn1.5O4材料的电荷转移电阻,提高了其电导率,进而提高了其动力学性能。Mo掺杂减小LiNi0.5Mn1.5O4材料的SEI膜厚度,有利于锂离子的可逆脱嵌,进而提高了其电化学性能。LiNi0.5Mn1.5O4及其掺杂材料LiMn1.4Ni0.55Mo0.05O4的界面电容(Cdl)值差别不大,说明Mo掺杂后,并没有影响电极材料的表面积或形貌。  相似文献   

10.
由溶胶-凝胶法制备了LiNi1/3Co1/3Mn1/3O2粉体,对比研究了聚乙二醇和柠檬酸2种添加剂对其界面和结晶度的影响,利用扫描电子显微镜、x射线衍射仪和热分析仪器分析了其形貌和物相等。结果表明,900℃煅烧15h时粉末粒度为1μm左右,并发生软团聚,从单个颗粒来看,样品表面光滑,界面清晰,分散较为均匀;添加聚乙二醇时粒度为1μm左右,粒子呈类球状;添加柠檬酸时粒子粒度为1~2μm左右,粉末结晶度较好。  相似文献   

11.
锂离子二次电池的研究不断深入,高电位正极材料的研究正日益受到重视。新型锂离子电池正极材料LiNi0.5Mn1.5O4嵌锂电位高达4.7V,能量效率高,循环性能好,在电动汽车、航空航天等领域具有良好的发展前景。综述了LiNi0.5Mn1.5O4的制备方法及近年来在提高其电化学性能方面的研究进展。  相似文献   

12.
以氢氧化钠为沉淀剂,采用共沉淀法合成了Ni1/3Co1/3Mn1/3(OH)2前驱体,前驱体和LiOH·H2O充分混合高温烧结制备了锂离子电池正极材料LiNi1/3Co1/3Mn1/3O2.采用X射线衍射(XRD)、扫描电子显微镜(SEM)和电化学性能测试对LiNi1/3Co1/3Mn1/3O2正极材料的结构、微观形貌及电化学性能进行了表征.XRD结果表明,所合成的LiNi1/3Co1/3Mn1/3O2物相单一无杂相,具有标准的α-NaFeO2型层状结构.SEM测试显示,颗粒粒度均一,粒径大约在0.5μm,粒径分布窄.以20mA/g电流密度放电,充放电电压在2.8~4.4 V之间,首次放电比容量达到181mAh/g,80次循环之后放电比容量仍然保持在172mAh/g;循环伏安测试显示,LiNi1/3Co1/3Mn1/3O2反应中主要是Ni2 /Ni4 、Co3 /Co4 2个电对在起作用,锰的价态保持不变,起到支撑结构的作用.  相似文献   

13.
以Ni(CH3COO)2·4H2O和Mn(CH3COO)2·4H2O为原料,分别在400、500℃分解3、7h得到镍锰复合氧化物前驱体,再与锂源Li2CO3混匀,在800℃煅烧12h,600℃退火24h得到LiNi0.5Mn1.5O4正极材料。XRD、SEM、EIS和恒流充放电测试结果表明,在400℃、7h制备的前驱体与Li2CO3合成的LiNi0.5Mn1.5O4性能最佳。室温下以0.1C倍率充放电,首次放电比容量达到141.5mAh/g,循环30次后容量保持率为98.55%;以1C倍率充放电,首次放电比容量为120.34mAh/g,循环30次后放电比容量为112.09mAh/g。  相似文献   

14.
通过固相自引发基团置换反应——流变相法制备出层状LiNi1/3Co1/3Mn1/3O2正极材料,研究了不同烧结温度对材料的结构特性、微观形貌以及电化学性能的影响。结果表明,850℃煅烧20h的样品具有最佳的二维层状结构和阳离子有序度,产物颗粒呈球形,分布均匀,平均粒径约250nm。在2.8~4.3V区间,以80mA/g充放电,首次放电比容量为169mAh/g,30次循环后容量保持率为82.6%。将充电截止电压提高至4.4V,材料的前几次放电容量明显提高,以32mA/g充放电,10次循环后的放电比容量为174mAh/g,其后容量衰减加快,循环稳定性变差。  相似文献   

15.
采用溶胶凝胶法合成了不同温度下的锂离子电池正极材料LiNi0.05Mn1.95O3.95F0.05.使用X射线衍射对合成材料的结构进行了表征.考察烧结温度对其结构及电化学性能的影响.随着烧结温度的升高,尖晶石型结构越来越完整,初始放电比容量增大,但循环性能却逐渐变差.在750℃T烧结温度12h得到了性能较好的LiNi0.05Mn1.95O3.95F0.05,首次放电比容量为109.7mAh/g,50次循环后,其放电比容量仍保持在101.6mAh/g,适合作为锂离子电池的正极材料.  相似文献   

16.
采用氢氧化物共沉淀法合成LiNi0.8Co0.1Mn0.1O2正极材料,对产物进行X射线衍射(XRD)、扫描电镜(SEM)、透射电镜(TEM)及电化学性能分析,结果表明,LiNi0.8Co0.1Mn0.1O2在0.5C下的循环性能和倍率性能较差,100次循环后,Li+的嵌入/脱嵌的界面阻抗(Rf)和电荷转移阻抗(Rct)迅速增加,极化增大。为改善其电化学性能,以尿素为沉淀剂,采用均匀沉淀法,在LiNi0.8Co0.1Mn0.1O2表面包覆不同比例Al2O3包覆层,研究其对LiNi0.8-Co0.1Mn0.1O2电化学性能的影响。在所有的样品中,1%Al2O3包覆LiNi0.8Co0.1Mn0.1O2具有最优的六方晶型α-NaFeO2层状结构和最低的阳离子混排度。SEM和TEM图表明无定形透明多孔Al2O3包覆层均匀地包覆在LiNi0.8Co0.1Mn0.1O2表面。与纯相相比,1%Al2O3包覆LiNi0.8Co0.1Mn0.1O2具有较好的电化学性能,包括相对较高的首次放电容量189.56mAh·g-1、最高的首次库伦效率87.95%、较好的循环性能和倍率性能。循环伏安(CV)和电化学阻抗(EIS)结果表明,LiNi0.8Co0.1Mn0.1O2电化学性能得到提高是由于Al2O3包覆层可以抑制电解液与正极副反应的发生,从而减小循环过程中界面阻抗值和电荷转移阻抗值的增大。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号