首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A new method to synthesize alumina reinforced Ni3Al intermetallic matrix composites has been described. The powder mixture of nickel and aluminium was mechanically alloyed. The powder mixture was excessively heated during mechanical alloying and then exposed to atmosphere for oxidation. The oxidized powder mixture was transformed into alumina reinforced nickel aluminide matrix composite on subsequent pulse current processing. Alumina reinforcements were generated in the nickel aluminide matrix by in situ precipitation. The microstructure of the composite showed that the alumina reinforcements were 50–150 nm in size. The fine alumina reinforcements were homogeneously distributed in the matrix phase. The mechanical properties of the alumina reinforced nickel aluminide matrix composite fairly exceeded the nickel aluminide alloys. This novel synthesis approach allowed the rapid and facile production of high strength alumina reinforced Ni3Al matrix composites.  相似文献   

2.
Aluminu–matrix composites produced by Ni3Al intermetallic particles are increasingly used in aerospace and structural applications because of their outstanding properties. In manufacturing of metal–matrix composites using powder metallurgy blending and milling are important factors. They control the final distribution of reinforcement particles and porosity in green compacts which in turn, strongly affect the mechanical properties of the produced PM materials. This paper studies different conditions for producing composite powders with uniform dispersion of Ni3Al particles in aluminum powders and improved physical and mechanical properties. The results indicated that an intermediate milling time for fabrication of composite powder, better than prolonged and shortened ones, causes better microstructure and properties. It was shown that addition of 5 vol.% Ni3Al particles, produced by 15 h mechanical alloying to aluminum powders, and then 12 h blending operation provides an appropriate condition for producing Al–Ni3Al composite powder.  相似文献   

3.
A new manufacturing process for metal matrix composites has been invented, namely accumulative press bonding (APB). The APB process provided an effective method to produce bulk Al/10 vol.% WCp composite using tungsten carbide (WC) powder and AA1050 aluminum sheets as the raw materials. The microstructural evolutions and mechanical properties of the monolithic aluminum and Al/WCp composite during various APB cycles were examined by scanning electron microscopy, X-ray diffractometry, X’pert HighScore software, and tensile test equipment. The results revealed that by increasing the number of APB cycles (a) the uniformity of WC particles in aluminum matrix improved, (b) the porosity of the composite eliminated, (c) the particle free zones decreased and (d) the cluster characteristics improved. Hence, the final Al/WCp composite processed by 14 APB cycles showed a uniform distribution of WCp throughout the aluminum matrix, strong bonding between particles and matrix, and a microstructure without any porosity and undesirable phases. The X-ray diffraction results also showed that nanostructured Al/WCp composite with the average crystallite size of 58.4 nm was successfully achieved by employing 14 cycles of APB technique. The tensile strength of the composites enhanced by increasing the number of APB cycles, and reached to a maximum value of 216 MPa at the end of 14th cycle, which is 2.45 and 1.2 times higher than obtained values for annealed (raw material, 88 MPa) and 14 cycles APBed monolithic aluminum (180 MPa), respectively. Though the elongation of Al/WCp composite lessened during the initial cycles of APB process, it increased at the final cycles of the mentioned process by 78%. Role of WC particles, uniformity of reinforcement, porosity, bonding quality of the reinforcement and matrix, grain refinement, and strain hardening were considered as the strengthening mechanisms in the manufactured composites.  相似文献   

4.
A new Ti41.3Cu43.7Hf13.9Si1.1 bulk metallic glass (BMG), free of Ni, Al and Be elements, was designed using the proper mixing of binary deep eutectics. The alloy exhibited excellent glass forming ability (GFA) and could be cast into single glassy rod up to 3 mm in diameter by copper mould casting method. The appropriate atomic-size mismatch, the large negative heat of mixing among constituent elements, and the possible formation of glassy HfSiO4 facilitated its superior GFA. The BMG also showed good mechanical properties with fracture strength of 1685 MPa and Young’s modulus of 95 GPa as well as better corrosion resistance in both NaCl and Hank’s solutions, compared with pure Ti and Ti–6Al–4V alloy. The above results demonstrated that the developed BMG is promising in biomedical applications.  相似文献   

5.
《Advanced Powder Technology》2020,31(8):3500-3506
Metallic glass (MG) reinforced aluminum matrix composites (AMCs) have attracted the interest of many researchers in the past few years. In this study, Fe50Cr25Mo9B13C3 metallic glass (FMG) particles reinforced 7075 aluminum matrix (Al-7075) composites were prepared by spark plasma sintering (SPS) technique. The microstructure of the composites showed good interface bonding between the FMG particles and the matrix. The micro-hardness of the composite with 30 vol% FMG particles reached 160.63 HV, which was increased by 30% compared with that of Al-7075 (119.3 HV). The ultimate compression strength (UCS) of the composite was also improved significantly from 596 MPa for Al-7075 matrix to 749 MPa for the composite reinforced with 30 vol% FMG particles, and the compression strain of the composite reached 22%. These results indicate that the mechanical properties of the composites can be enhanced by adding high volume fraction FMG particles. The enhancement of the strength is resulted from multiple strengthening mechanisms, and the main contributions come from the thermal mismatch and grain refinement.  相似文献   

6.
In-situ aluminum matrix composites were fabricated from Al–TiO2–graphitic C powder mixtures using exothermic dispersion method. The effects of C/TiO2 molar ratio on the reaction processes, activation energies and mechanical properties of the resulting materials were investigated. When the C/TiO2 molar ratio is 0, Al reacts with TiO2 to produce fine α-Al2O3 particles and Ti, which then reacts with Al to form large rod-like Al3Ti phase. By adding graphite C into the Al–TiO2 system, the activation energy of the first reactive step increases; in addition, the resultant Ti preferentially reacts with C to form hard TiC particles. When the C/TiO2 molar ratio increases to 1.0, the Al3Ti phase disappears and the reinforcements consist of nano-sized α-Al2O3 and TiC phases. The tensile strength of the composites increases from 239.2 MPa to 351.8 MPa and the elongation increases from 4.1% to 5.6%, suggesting a marked increase in damage tolerance (i.e., toughness).  相似文献   

7.
The influence of shot peening on the surface mechanical properties of the TiB2/6351Al composite has been investigated. The microstructures were determined by X-ray diffraction line profile analysis. The results showed that the increment of hardness was about 50% in the top surface layer. The matrix proof stress σ 0.2 of the shot peened surface had been increased by 27% and the whole strength increment was about 21% by considering the contribution of the reinforcements. The domain size and the dislocation density in the strengthened surface were 55 nm and 3.67 × 1015 m−2, respectively. The mechanical properties improvement of the modified surface was partially due to the reinforcements but mainly due to the fine domains, high value of dislocation density induced by shot peening.  相似文献   

8.
The aim of this paper was to evaluate the effect of hybridizing glass and curaua fibers on the mechanical properties of their composites. These composites were produced by hot compression molding, with distinct overall fiber volume fraction, being either pure curaua fiber, pure glass fiber or hybrid. The mechanical characterization was performed by tensile, flexural, short beam, Iosipescu and also nondestructive testing. From the obtained results, it was observed that the tensile strength and modulus increased with glass fiber incorporation and for higher overall fiber volume fraction (%Vf). The short beam strength increased up to %Vf of 30 vol.%, evidencing a maximum in terms of overall fiber/matrix interface and composite quality. Hybridization has been successfully applied to vegetable/synthetic fiber reinforced polyester composites in a way that the various properties responded satisfactorily to the incorporation of a third component.  相似文献   

9.
A series of Gd–Ni–Al ternary glassy alloys with the maximum diameter of 4 mm were obtained by common copper mold casting. The maximum values of the reduce glass transformation temperature (T g/T m) and the distance of supercooling region ΔT x of these alloys in this study were 0.648 and 50 K, respectively. The compressive fracture strength (σ f) and Young’s modulus (E) of Gd–Ni–Al glassy alloys were 1,240–1,330 MPa and 63–67 GPa, respectively. The magnetic properties of these BMGs were investigated. The Gd–Ni–Al bulk glassy alloys with great glass forming ability and good mechanical properties are promising for the future development as a new type of function materials.  相似文献   

10.
采用基于粉末成形及半固态成形工艺而提出的伪半固态触变模锻成形工艺,成功制备出力学性能良好的Al/Al2O3复合材料桶制件,其中37%(体积分数)Al/Al2O3桶形件抗弯强度达570-690 MPa,断裂韧性达8.5-16.8 MPa·m1/2.测试结果表明,复合材料伪半固态触变模锻成形工艺参数,如成形温度、成形压力以及金属相体分率等对制件的性能具有较大的影响.研究结果有利于促进该工艺在高熔点材料或复合材料领域的实际应用.  相似文献   

11.
The lithium disilicate glass–ceramics composites reinforced and toughened by tetragonal zirconia (3Y-TZP) were prepared by hot-pressing at 800 °C with varying zirconia content from 0 to 30 wt.%. In the case of the composites of small zirconia content (below 10 wt.%), zirconia acted as nucleation agent primarily, and the microstructure was refined continuously. The morphology of Li2Si2O5 crystals transformed from rod-shaped to spherical structure, and the mechanical properties decreased inevitably. For the composites of large zirconia content (from 15 wt.% to 30 wt.%), however, zirconia restrained the phase separation of glass. The morphology of Li2Si2O5 crystals transformed to rod-shaped structure again. The mechanical properties of the composite at zirconia content of 15 wt.% increased up to 340 MPa and 3.5 MPa m1/2 which were much higher than those of zirconia-free glass–ceramics. The improved properties were attributed mainly to compressive stress reinforcement, phase transformation and bridging toughening mechanisms.  相似文献   

12.
A metal matrix composite has been obtained by a novel synthesis route, reacting Al3Ti and graphite at 1000 °C for about 1 min after ball-milling and compaction. The resulting composite is made of an aluminium matrix reinforced by nanometer sized TiC particles (average diameter 70 nm). The average TiC/Al ratio is 34.6 wt.% (22.3 vol.%). The microstructure consists of an intimate mixture of two domains, an unreinforced domain made of the Al solid solution with a low TiC reinforcement content, and a reinforced domain. This composite exhibits uncommon mechanical properties with regard to previous micrometer sized Al–TiC composites and to its high reinforcement volume fraction, with a Young’s modulus of ∼110 GPa, an ultimate tensile strength of about 500 MPa and a maximum elongation of 6%.  相似文献   

13.
To study the damping capacity of BaTiO3/Al composites, Al composites reinforced with BaTiO3 powder (average grain sizes: 100 and 1000 nm) were fabricated by the hot-pressing sintering method. The damping properties of pure Al and BaTiO3/Al composites were investigated and compared based on the dynamic mechanical analysis over a wide range of temperatures (50–285°C). Compared with pure Al matrix, 1000 nm BaTiO3/Al composites with 5 and 10% mass fractions of BaTiO3 exhibited better damping capacity. For 100 nm BaTiO3/Al composite, its damping capacity is slightly higher than that of pure Al below 145°C, while it becomes lower above this degree. The damping capacity enhancement of BaTiO3/Al composites can be explained by the ferroelastic domain damping. Furthermore, 5 and 10% BaTiO3/Al composites have higher bending strength and hardness than pure Al sample.  相似文献   

14.
《Advanced Powder Technology》2014,25(4):1362-1368
Mechanically alloyed nanocrystalline Al63Ni37 powder with a metastable structure of NiAl phase was mixed with 20, 30 and 40 vol.% of Al powder. The powder mixtures as well as pure powder of Al63Ni37 alloy were consolidated at 600 °C under the pressure of 7.7 GPa. The bulk materials were characterised by structural investigations (X-ray diffraction, light and scanning electron microscopy, energy dispersive spectroscopy), compression and hardness tests and measurements of density and open porosity. During the consolidation, the metastable NiAl phase transformed into the equilibrium Al3Ni2 intermetallic. The mean crystallite size of the Al3Ni2 intermetallic in the bulk materials is below 40 nm. The microstructure of the composite samples consists of Al3Ni2 intermetallic areas surrounded by lamellae-like Al regions. The hardness of the produced Al3Ni2–Al composites is in the range of 5–6.5 GPa (514–663 HV1), while that of the Al3Ni2 intermetallic is 9.18 GPa (936 HV1). The compressive strength of the composites increases with the decrease of Al content, ranging from 567 MPa to 876 MPa. The plastic elongation of the composites was increasing with the increase of Al content, while the Al3Ni2 intermetallic failed in the elastic region.  相似文献   

15.
In this study, the formation and characterisation of Aluminium (Al)-based composites by mechanical alloying and hot extrusion were investigated. Initially, the vanadium trialuminide (Al3V) particles with nanosized structure were successfully produced by mechanical alloying and heat treatment. Al3V–Al2O3 reinforcement was synthesised by mechanochemical reduction during milling of V2O5 and Al powder mixture. In order to produce composite powders, reinforcement powders were added to pure Al powders and milled for 5?h. The composite powders were consolidated in an extrusion process. The results showed that nanostructured Al-10?wt-% Al3V and Al-10?wt-% (Al3V–Al2O3) composites have tensile strengths of 209 and 226?MPa, respectively, at room temperature. In addition, mechanical properties did not drop drastically at temperatures of up to 300°C.  相似文献   

16.
Titanium/silica (Ti/SiO2) composites are fabricated using powder metallurgy (P/M). Nanoscale biocompatible SiO2 particles are selected as reinforcement for the Ti/SiO2 composite to enhance its biocompatibility and strength, especially when with high porosity. Effects of the SiO2 particle addition and sintering temperature on mechanical properties of the Ti/SiO2 composites are investigated. The results indicate that the mechanical property of Ti/SiO2 composites sintered at 1100 °C are better than those at 900 and 1000 °C. The strength of the Ti/SiO2 composites is significantly higher than that of pure titanium. The composite with the SiO2 content of 2 wt% sintered at 1100 °C for 4 h shows an appropriate mechanical property with a relative density of 96.5%, a compressive strength of 1566 MPa and good plasticity (an ultimate strain of 15.96%). In vitro results reveal that the Ti/SiO2 composite possesses excellent biocompatibility and cell adhesion. Osteoblast-like cells grow and spread well on the surfaces of the Ti/SiO2 composites. The Ti/SiO2 composite is a promising material for great potential used as an orthopedic implant material.  相似文献   

17.
镁及其合金是目前最轻的金属结构材料,合金化虽然提升了镁合金的力学性能,但导致其导热性能严重下降,限制了镁合金的应用。碳纳米管(CNTs)因具有优异的力学、热学等性能,是最理想的增强体之一,可以用于改善镁合金的力学性能和热学性能。采用粉末冶金法分别以纯Mg、Mg-9Al合金、Mg-6Zn合金为基体制备了不同CNTs含量的镁基复合材料,利用光学显微镜、扫描电子显微镜、透射电子显微镜对复合材料微观组织、基体与增强体界面及析出相进行表征,并对复合材料的拉伸性能和热学性能进行测试。研究结果表明,当CNTs质量分数不超过1.0%时,可提高纯镁基复合材料的导热性能,力学性能仅有稍微降低;将CNTs添加到Mg-9Al合金中,可以促进纳米尺度β-Mg 17 Al 12相在CNTs周围析出,降低了Al在Mg基体中的固溶度,使CNTs/Mg-9Al复合材料的导热性能有所提高。此外,在CNTs/Mg-6Zn复合材料界面处存在C原子和Mg原子的相互嵌入区,这种嵌入型界面不仅有利于复合材料力学性能的提高,也使CNTs起到加速电子移动的“桥”的作用,有利于该复合材料热导率的提高。当CNTs质量分数为0.6%时,CNTs/Mg-6Zn复合材料具有较为优异的热学性能和力学性能,其热导率为127.0 W/(m·K),抗拉强度为303.0 MPa,屈服强度为204.0 MPa,伸长率为5.0%。  相似文献   

18.
Coupling the high yielding strength with enhanced plasticity under compression at ambient temperature, a series of Zr-based bulk metallic glass matrix composites are designed based on a pseudo ternary phase diagram. The largest compressive fracture plastic strain of 17.0% with the yielding strength of 1070 MPa is available for Zr60.0Ti14.7Nb5.3Cu5.6Ni4.4Be10.0 bulk metallic glass matrix composite. The relationship between the cooling rate and the microstructure, the microstructure and the mechanical properties, and the fractographs of the composites is carefully identified.  相似文献   

19.
One of the great challenges of producing cast metal matrix composites is the agglomeration tendency of the reinforcements. This would normally result in poor distribution of the particles, high porosity content, and low mechanical properties. In the present work, a new method for uniform distribution of very fine SiC particles with average size of less than 3 μm was employed. The key idea was to allow for gradual in situ release of properly wetted SiC particles in the liquid metal. For this purpose, SiC particles were injected into the melt in three different forms, i.e., untreated SiCp, milled particulate Al–SiCp composite powder, and milled particulate Al–SiCp–Mg composite powder. The resultant composite slurries were then cast from either fully liquid (stir casting) or semisolid (compocasting) state. Consequently, the effects of the casting method and the type of the injected powder on the microstructural characteristics as well as the mechanical properties of the cast composites were investigated. The results showed that the distribution of SiC particles in the matrix and the porosity content of the composites were greatly improved by injecting milled composite powders instead of untreated-SiC particles into the melt. Casting from semisolid state instead of fully liquid state had similar effects. The average size of SiC particles incorporated into the matrix was also significantly reduced from about 8 to 3 μm by injecting milled composite powders. The ultimate tensile strength, yield strength and elongation of Al356/5 vol.%SiCp composite manufactured by compocasting of the (Al–SiCp–Mg)cp injected melt were increased by 90%, 103% and 135%, respectively, compared to those of the composite manufactured by stir casting of the untreated-SiCp injected melt.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号