首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
There is a strong interest in developing an in vitro arsenic (As) model that satisfactorily estimates the variability in in vivo relative oral bioavailability (RBA) measurements. Several in vitro tests have been developed, but none is universally accepted due to their limited success in predicting soil As RBA. A suite of amorphous and crystalline solid As phases were chosen, utilizing a worst-case scenario (WCS) that simulated fasting children's gastric solution chemistry. The objectives of this study were to (i) determine the effects of residence time, pH, and solid-to-solution ratio on As bioaccessibility and speciation in the in vitro gastric test; (ii) provide the fundamental basis for an optimized in vitro model constrained by the WCS; and (iii) validate the optimized in vitro test with the in vivo RBA obtained with BALB/c mice. The gastric pH was the only significant (p < 0.05) factor influencing solid As bioaccessibility. Bioaccessible As retained the oxidation state after its release from the solid into the gastric solution. The optimized in vitro model adequately predicted RBA values for a suite of solid As phases typically encountered in soils, with the exception of aluminum-based solids. This study is an excellent starting point for developing an in vitro test applicable to different As-contaminated soils.  相似文献   

2.
A number of in vitro assays are available for the determination of arsenic (As) bioaccessibility and prediction of As relative bioavailability (RBA) to quantify exposure for site-specific risk assessment. These data are usually considered in isolation; however, meta analysis may provide predictive capabilities for source-specific As bioaccessibility and RBA. The objectives of this study were to predict As RBA using previously published in vivo/in vitro correlations and to assess the influence of As sources on As RBA independent of geographical location. Data representing 351 soils (classified based on As source) and 514 independent bioaccessibility values were retrieved from the literature for comparison. Arsenic RBA was predicted using published in vivo/in vitro regression models, and 90th and 95th percentiles were determined for each As source classification and in vitro methodology. Differences in predicted mean As RBA were observed among soils contaminated from different As sources and within source materials when various in vitro methodologies were utilized. However, when in vitro data were standardized by transforming SBRC intestinal, IVG, and PBET data to SBRC gastric phase values (through linear regression models), predicted As RBA values for As sources followed the order CCA posts ≥ herbicide/pesticide > mining/smelting > gossan soils with 95th percentiles for predicted As RBA of 78.0, 78.4, 67.0, and 23.7%, respectively.  相似文献   

3.
It is widely accepted that the use of total metal concentrations in soil overestimates metal risk from human ingestion of contaminated soils. In vitro simulators have been used to estimate the fraction of arsenic present in soil that is bioaccessible in the human digestive track. These approaches assume that the bioaccessible fraction remains constant across soil total metal concentrations and that intestinal microbiota do not contribute to arsenic release. Here, we evaluate both of these assumptions in two size fractions (bulk and <38 microm) of arsenic-rich mine tailings from the Goldenville, Lower Seal Harbour, and Montague Gold Districts, Nova Scotia. These samples were evaluated using an in vitro gastrointestinal model, the Simulator of the Human Intestinal Ecosystem (SHIME). Arsenic bioaccessibility, which ranged between 2 and 20% in the small intestine and 4 and 70% in the colon, was inversely related to total arsenic concentration in the mine tailings. Additionally, arsenic bioaccessibility was greater in the bulk fraction than in the <38 microm fraction in the small intestine and colon while colon microbes increased the bioaccessibility of arsenic in mine tailings. These results suggest that the practice of using a constant percent arsenic bioaccessibility across all metal concentrations in risk assessment should be revisited.  相似文献   

4.
Arsenic contaminated groundwater is used extensively in Bangladesh to irrigate the staple food of the region, paddy rice (Oryza sativa L.). To determine if this irrigation has led to a buildup of arsenic levels in paddy fields, and the consequences for arsenic exposure through rice ingestion, a survey of arsenic levels in paddy soils and rice grain was undertaken. Survey of paddy soils throughout Bangladesh showed that arsenic levels were elevated in zones where arsenic in groundwater used for irrigation was high, and where these tube-wells have been in operation for the longest period of time. Regression of soil arsenic levels with tube-well age was significant. Arsenic levels reached 46 microg g(-1) dry weight in the most affected zone, compared to levels below l0 microg g(-1) in areas with low levels of arsenic in the groundwater. Arsenic levels in rice grain from an area of Bangladesh with low levels of arsenic in groundwaters and in paddy soils showed that levels were typical of other regions of the world. Modeling determined, even these typical grain arsenic levels contributed considerably to arsenic ingestion when drinking water contained the elevated quantity of 0.1 mg L(-1). Arsenic levels in rice can be further elevated in rice growing on arsenic contaminated soils, potentially greatly increasing arsenic exposure of the Bangladesh population. Rice grain grown in the regions where arsenic is building up in the soil had high arsenic concentrations, with three rice grain samples having levels above 1.7 microg g(-1).  相似文献   

5.
Lead (Pb) sorption onto oxide surfaces in soils may strongly influence the risk posed from incidental ingestion of lead-contaminated soils. In this study, Pb was sorbed to a model soil mineral, birnessite, and was placed in a simulated gastrointestinal tract (in vitro) to simulate the possible effects of ingestion of a soil contaminated with Pb. The changes in Pb speciation were determined using extended X-ray absorption fine structure and X-ray absorption near edge spectroscopy. Birnessite has a very high affinity for Pb with a sorption maximum of 0.59 mol Pb kg(-1) (approximately 12% Pb sorbed by mass) in which there was no detectable bioaccessible Pb (< 0.002%). Surface speciation of the birnessite Pb was determined to be a triple corner sharing complex in the birnessite interlayer. Lead sorbed to Mn oxide in contaminated media will have a very low (approximately equal to 0) Pb bioaccessibility and present little risk associated with incidental ingestion of soil. These results suggest that birnessite, and other Mn oxides would be powerful remediation tools for Pb-contaminated media because of their high affinity for Pb.  相似文献   

6.
Highly specialized personnel and high cost are typically required for in vivo risk assessment of arsenic (As) exposure to humans in As-contaminated soils. Arsenic bioaccessibility in soils, as determined with the aid of in vitro tests, is quite variable, and its magnitude depends upon unidentified soil properties. Use of soil chemical properties is a common practice for construction of As(V) sorption and bioaccessibility models with relative success. We propose a novel As(V) bioaccessibility model, which was tested on 17 soils. The model includes only two parameters characterizing surface properties of soils that are readily determined from N2- and CO2-based specific surface areas (SSAs), and total organic carbon (OC) content. We found that N2 and CO2 molecules act as As(V) "surrogates", probing easily accessible and relatively difficult to access soil porosity, respectively. Three interrelated linear models were constructed using two terms (CO2/N2-based SSAs and OC) that were significant (p <0.001) in explaining 51 and 95% of the variability observed in As(V) sorption and bioaccessibility, respectively. The proposed models successfully predicted bioaccessible As concentrations for 4 out of the 5 soils that were not included in the bioaccessibility models, reaching RMSE values of < or =10%.  相似文献   

7.
Adsorption,sequestration, and bioaccessibility of As(V) in soils   总被引:1,自引:0,他引:1  
The influence of various soil physical and chemical properties (Fe and Mn oxides, pH, cation exchange capacity, total inorganic and organic carbon, and particle size) on As(V) adsorption, sequestration, and relative bioaccessibility (as a surrogate for oral bioavailability) was investigated in a wide range of well-characterized soils over a 6-month period. Arsenic(V) bioaccessibility was measured using a streamlined version of a physiologically based extracton test (PBET), designed to replicate the solubility-limiting conditions in a child's digestive tract. The soil's dithionite-citrate-bicarbonate (DCB) extractable Fe oxide content was the most important land only statistically significant) soil property controlling the initial degree of adsorption. Sequestration, as measured by the reduction in bioaccessibility over time, occurred to a significant extent in 17 of 36 (47.2%) soils over the first 3 months. In contrast, only 4 of 36 (11.1%) soils exhibited a significant reduction in bioaccessibility from 3 to 6 months. Soil pH was the most important (and only statistically significant) soil property affecting the decrease in bioaccessibility upon aging for 6 months. Soils with pH < 6 generally sequestered As(V) more strongly over time, whereas those with pH > 6 generally did not. The Fe oxide content and pH were the most important soil properties governing the steady-state bioaccessibility of As(V) in soil. Two multivariable linear regression models of steady-state As(V) bioaccessibility were developed using soil properties as independent variables. Generally, soils having higher Fe oxide content and lower soil pH exhibited lower bioaccessibility. These models were able to account for approximately 75-80% of the variability in steady-state bioaccessibility and independently predict bioaccessibility in five soils within a root-mean-square error (RMSE) of 8.2-10.9%. One of these models was also able to predict within an RMSE of 9.5% the in vivo bioavailability of As in nine contaminated soils previously used in swine dosing trials. These results indicate the bioaccessibility, and thus, potentially the bioavailability of otherwise soluble As(V) added to soils (i.e., the worst-case bioavailability scenario) is significantly reduced in some soils over time, particularly those with lower pH and higher Fe oxide content. These results also provide a means of estimating As(V) bioaccessibility and bioavailability on the basis of soil properties.  相似文献   

8.
Insufficient information exists about the speciation of arsenic leaching from in-service chromated copper arsenate (CCA)-treated products and the overall impact to soils and groundwater. To address this issue, two decks were constructed, one from CCA-treated wood and the other from untreated wood. Both decks were placed in the open environment where they were impacted by rainfall. Over a one-year period, rainwater runoff from the decks and rainwater infiltrating through 0.7 m of sand below the decks was collected and analyzed for arsenic species by HPLC-ICP-MS. The average arsenic concentration in the runoff of the untreated deck was 2-3 microg/L, whereas from the CCA-treated deck it was 600 microg/L. Both inorganic As(III) and As(V) were detected in the runoff from both decks, with inorganic As(V) predominating. No detectable levels of organoarsenic species were observed. The total arsenic concentration in the infiltrated water of the treated deck had risen from a background concentration of 3 microg/L to a concentration of 18 microg/L at the end of the study. Data from the deck study were combined with annual CCA-treated wood production statistics to develop a mass balance model to estimate the extent of arsenic leaching from in-service CCA-treated wood structures to Florida soils. Results showed that during the year 2000, of the 28 000 t of arsenic imported into the state and utilized for in-service CCA-treated wood products, approximately 4600 t had already leached. Future projections suggest that an additional 11,000 t of arsenic will leach during in-service use within the next 40 years.  相似文献   

9.
Soil ingestion can be a major exposure route for humans to many immobile soil contaminants. Exposure to soil contaminants can be overestimated if oral bioavailability is not taken into account. Several in vitro digestion models simulating the human gastrointestinal tract have been developed to assess mobilization of contaminants from soil during digestion, i.e., bioaccessibility. Bioaccessibility is a crucial step in controlling the oral bioavailability for soil contaminants. To what extent in vitro determination of bioaccessibility is method dependent has, until now, not been studied. This paper describes a multi-laboratory comparison and evaluation of five in vitro digestion models. Their experimental design and the results of a round robin evaluation of three soils, each contaminated with arsenic, cadmium, and lead, are presented and discussed. A wide range of bioaccessibility values were found for the three soils: for As 6-95%, 1-19%, and 10-59%; for Cd 7-92%, 5-92%, and 6-99%; and for Pb 4-91%, 1-56%, and 3-90%. Bioaccessibility in many cases is less than 50%, indicating that a reduction of bioavailability can have implications for health risk assessment. Although the experimental designs of the different digestion systems are distinct, the main differences in test results of bioaccessibility can be explained on the basis of the applied gastric pH. High values are typically observed for a simple gastric method, which measures bioaccessibility in the gastric compartment at low pHs of 1.5. Other methods that also apply a low gastric pH, and include intestinal conditions, produce lower bioaccessibility values. The lowest bioaccessibility values are observed for a gastrointestinal method which employs a high gastric pH of 4.0.  相似文献   

10.
The relative bioavailability of arsenic, antimony, cadmium, and lead for the ingestion pathway was measured in 16 soils contaminated by either smelting or mining activities using a juvenile swine model. The soils contained 18 to 25,000 mg kg(-1) As, 18 to 60,000 mg kg(-1) Sb, 20 to 184 mg kg(-1) Cd, and 1460 to 40,214 mg kg(-1) Pb. The bioavailability in the soils was measured in kidney, liver, bone, and urine relative to soluble salts of the four elements. The variety of soil types, the total concentrations of the elements, and the range of bioavailabilities found were considered to be suitable for calibrating the in vitro Unified BARGE bioaccessibility method. The bioaccessibility test has been developed by the BioAccessibility Research Group of Europe (BARGE) and is known as the Unified BARGE Method (UBM). The study looked at four end points from the in vivo measurements and two compartments in the in vitro study ("stomach" and "stomach and intestine"). Using benchmark criteria for assessing the "fitness for purpose" of the UBM bioaccessibility data to act as an analogue for bioavailability in risk assessment, the study shows that the UBM met criteria on repeatability (median relative standard deviation value <10%) and the regression statistics (slope 0.8 to 1.2 and r-square > 0.6) for As, Cd, and Pb. The data suggest a small bias in the UBM relative bioaccessibility of As and Pb compared to the relative bioavailability measurements of 3% and 5% respectively. Sb did not meet the criteria due to the small range of bioaccessibility values found in the samples.  相似文献   

11.
The risk posed from incidental ingestion to humans of arsenic-contaminated soil may depend on sorption of arsenate (As(V)) to oxide surfaces in soil. Arsenate sorbed to ferrihydrite, a model soil mineral, was used to simulate possible effects on ingestion of soil contaminated with As-(V) sorbed to Fe oxide surfaces. Arsenate sorbed to ferrihydrite was placed in a simulated gastrointestinal tract (in vitro) to ascertain the bioaccessibility of As(V) and changes in As(V) surface speciation caused by the gastrointestinal system. The speciation of As was determined using extended X-ray absorption fine structure (EXAFS) analysis and X-ray absorption near-edge spectroscopy (XANES). The As(V) adsorption maximum was found to be 93 mmol kg(-1). The bioaccessible As(V) ranged from 0 to 5%, and surface speciation was determined to be binuclear bidentate with no changes in speciation observed post in vitro. Arsenate concentration in the intestine was not constant and varied from 0.001 to 0.53 mM for the 177 mmol kg(-1) As(V) treated sample. These results suggest that the bioaccessibility of As(V) is related to the As(V) concentration, the As(V) adsorption maximum, and that multiple measurements of dissolved As(V) in the intestinal phase may be needed to calculate the bioaccessibility of As(V) adsorbed to ferrihydrite.  相似文献   

12.
In vitro digestors can be used to provide bioaccessibility values to help assess the risk from incidental human ingestion of contaminated soils. It has been suggested that these digestors may need to include a lipid sink to mimic human uptake processes. We compare the correspondence between in vivo polycyclic aromatic hydrocarbon (PAH) uptake for eight different PAH contaminated soils with PAH release in in vitro digestors in the presence and absence of a lipid sink. Lipid sinks were essential to the success of the in vitro digestors in predicting juvenile swine PAH uptake. In the presence of the lipid sink, results of the In Vitro Digestion model (IVD) closely corresponded with a slope of 0.85 (r(2) = 0.45, P < 0.07) to the in vivo results. The Relative Bioaccessibility Leaching Procedure (RBALP) results did not correspond to the in vivo study but did tightly reflect total soil PAH concentration. We conclude that the basis of this difference between digestors is that the RBALP used an aggressive extraction technique that maximized PAH release from soil. Systemic uptake in juvenile swine was not linked to soil PAH concentration but rather to the thermodynamic properties of the soil.  相似文献   

13.
At As-contaminated sites, where the ingestion of soil by children is typically the critical human-health exposure pathway, information on the bioavailability of soil-bound As is often limited. The influence of various soil physical and chemical properties (iron and manganese oxides, pH, cation exchange capacity, total inorganic and organic carbon, and particle size) on As(III) adsorption, sequestration, bioaccessibility (as a surrogate for oral bioavailability), and oxidation was investigated in 36 well-characterized soils by use of a physiologically based extraction test (PBET). These results were compared to an earlier published study with As(V) on the same set of soils. The properties of the soils were able to explain >80% of the variability in the adsorption and sequestration (as measured by the reduction in bioaccessibility over time) of As(III) in these soils. The initial bioaccessibility of As(III) was significantly higher than the initial bioaccessibility of As(V) on the same set of soils. However, over a 6-month period of aerobic aging, a significant portion of the solid-phase As(III) on these soils was oxidized to As(V), decreasing its bioaccessibility markedly. A multivariable linear regression model previously developed to predict the steady-state bioaccessibility of As(V) in soils was able to predict the bioaccessibility in As(III)-spiked soils within a root-mean-square error (RMSE) of 16.8%. Generally, soils having a higher iron oxide content and lower soil pH exhibited lower bioaccessibility. This model was also able to predict the in vivo bioavailability of As in contaminated soils previously used in an independent juvenile swine dosing trial within an RMSE of 15.5%, providing a greatly improved yet conservative estimate of bioavailability relative to the typical default assumption of 100%. However, the model was not able to accurately predict the bioavailability of As in a different set of contaminated soils previously used in an independent Cebus monkey dosing trial, consistently overpredicting the bioavailability, resulting in an RMSE of 42.7%. This model can be used to provide an initial estimate of As bioavailability in soil to aid in screening sites and justifying expensive site-specific animal feeding studies. Further, as the model is based on major soil properties, the resulting estimates are valid as long as the major soil properties do not change, thus providing some confidence in the long-term applicability of the estimates.  相似文献   

14.
Models simulating gastric conditions of mammalian (eastern cottontail, Sylvilagus floridanus; short-tailed shrew, Blarina brevicauda) and avian (American robin, Turdus migratorius) receptors were used to investigate the proportion of lead (Pb) mobilized into the digestive juices (the bioaccessible fraction) from soil, earthworms, and vegetation collected at a rifle and pistol (RP) range in eastern Ontario, Canada. Pb concentrations averaged 5044 mg kg(-1) in RP range surface soils, 727 mg kg(-1) in earthworm tissue, and 2945 mg kg(-1) in unwashed vegetation. For mammalian gastric models, the bioaccessible fraction of Pb in soils was 66 +/- 22%, in earthworm tissue was 77 +/- 14%, and in unwashed vegetation was 50 +/- 37%. For the avian gastric model, the bioaccessible fraction of Pb in soil was 53 +/- 43% and in earthworm tissue was 73 +/- 13%. The incorporation of soil and food web intermediate bioaccessibility data into standard risk calculations resulted in predicted risk being reduced for all receptors. The inclusion of bioaccessibility during ecological risk assessment affords a more realistic estimate of contaminant exposure, and is a valuable tool for use in contaminated sites management.  相似文献   

15.
This research compares the As and Cr chemistry of dislodgeable residues from chromated copper arsenate (CCA)-treated wood collected by two different techniques (directly from the board surface either by rubbing with a soft bristle brush or by rinsing from human hands after contact with CCA-treated wood) and demonstrates that these materials are equivalent in terms of both the chemical form and bonding of As and Cr and in terms of the As leaching behavior. This finding links the extensive chemical characterization and bioavailability testing that has been done previously on the brush-removed residue to a material that is derived from human skin contact with CCA-treated wood. Additionally, this research characterizes the arsenic present in biological fluids (sweat and simulated gastric fluid) following contact with these residues. The data demonstrate that in biological fluids the arsenic is present primarily as free arsenate ions. Arsenic-containing soils were also extracted into human sweat to evaluate the potential for arsenic dissolution from soils at the skin surface. For soils from field sites, only a small fraction of the total arsenic is soluble in sweat. Based on comparisons to reference materials that have been used for in vivo dermal absorption studies, these findings suggest that the actual relative bioavailability via dermal absorption of As from CCA residues and soil may be well below the current default value of 3% used by U.S. EPA.  相似文献   

16.
海产品中的砷及其代谢机制的研究进展   总被引:1,自引:0,他引:1       下载免费PDF全文
海产品中的砷通过食物链富集的方式进入人体。海产品中检测出的砷形态有三价的亚砷酸盐(As(III))、五价的砷酸盐(As(V))、砷胆碱(As C)、砷甜菜碱(As B)、砷糖、砷脂等。各种形态的砷通过不同代谢途径产生不同的代谢产物,从而表现出不同的毒性。砷的形态主要是通过高效液相色谱与电感耦合等离子体质谱仪的联用(HPLC-ICP-MS)来测定的。有机砷中砷胆碱(As C)的代谢产物为砷甜菜碱(As B)和砷脂;砷甜菜碱(As B)经尿液直接排出;不同的砷脂代谢产物不一样;砷糖的代谢产物至少12种,最主要的是五价的二甲基砷酸盐(DMA(V))。无机砷(包括砷酸盐和亚砷酸盐)最后代谢产物为五价的二甲基砷酸盐(DMA(V))和三价的二甲基亚砷酸盐(DMA(III))。海产品经过不同烹调处理后,其总砷浓度或多或少都有增加,砷形态也有变化,部分加工会导致毒性增加。对于消费者来说,注意饮食习惯包括海产品摄入量,摄入间隔,日常营养元素摄入与烹调方式的选择等是预防过量摄入有毒砷形态的有效手段。  相似文献   

17.
Wood treated with chromated copper arsenate (CCA) is primarily disposed within construction and demolition (C&D) debris landfills, with wood monofills and municipal solid waste (MSW) landfills as alternative disposal options. This study evaluated the extent and speciation of arsenic leaching from landfills containing CCA-treated wood. In control lysimeters where untreated wood was used, dimethylarsinic acid (DMAA) represented the major arsenic species. The dominant arsenic species differed in the lysimeters containing CCA-treated wood, with As(V) greatest in the monofill and C&D lysimeters and As(III) greatest in the MSW lysimeters. In CCA-containing lysimeters, the organoarsenic species monomethylarsonic acid (MMAA) and DMAAwere virtually absent in the monofill lysimeter and observed in the C&D and MSW lysimeters. Overall arsenic leaching rate varied for the wood monofill (0.69% per meter of water added), C&D (0.36% per m), and MSW (0.84% per m) lysimeters. Utilizing these rates with annual disposal data, a mathematical model was developed to quantify arsenic leaching from CCA-treated wood disposed to Florida landfills. Model findings showed between 20 and 50 t of arsenic (depending on lysimeter type) had leached prior to 2000 with an expected increase between 350 and 830 t by 2040. Groundwater analysis from 21 Florida C&D landfills suspected of accepting CCA-treated wood showed that groundwater at 3 landfills was characterized by elevated arsenic concentrations with only 1 showing impacts from the C&D waste. The slow release of arsenic from disposed treated wood may account for the lack of significant impact to groundwater near most C&D facilities at this time. However, greater impacts are anticipated in the future given that the maximum releases of arsenic are expected by the year 2100.  相似文献   

18.
目的 分析水煮和烘烤两种加工方式对两种贝类元素中8种金属元素生物可及性的影响。方法 采用体外模拟消化实验,利用电感耦合等离子体质谱仪(inductively coupled plasma-mass spectrometry, ICP-MS)分析牡蛎(Crassostrea gigas)和扇贝(Azumapecten farreri)体内8种元素(铁、砷、镉、铜、铁、锌、锰、汞)的生物可及性和含量的变化。结果 两种贝类元素含量的趋势大体一致,从高到低依次为锌>铁>铜>镉>砷>铅>汞。两种贝类中生物可及性最高的是牡蛎中的砷元素,为98.4%。生物可及性最低的是扇贝中的铁元素,为3.4%。经过不同的加工方式处理后,能显著提高两种贝类锰元素的生物可及性及显著降低牡蛎中铜、砷、铅元素的生物可及性。加热处理后扇贝中砷和镉元素的生物可及性增加。相较于蒸煮的加热方式,烘烤的加工方式对贝类元素生物可及性的影响更大。通过相关性分析可以看出,贝类元素生物可及性不仅与元素种类、加工方式相关,也与其他元素浓度相关。结论 水煮和烘烤两种加工方式对贝类中8种重金属元素浓度和生物可...  相似文献   

19.
Arsenic compounds used in wood preservation are classified as dangerous substances for which a cancerogenic effect to man has clearly been shown. Occupational exposure is possible by working up the preservatives and the impregnated wood. In the area of preservation plants in part a tremendously high contamination of soil by arsenic has been measured. By modern technology the environmental input in the area of the preservation plant could be reduced to a large extent. Although wood impregnated with arsenicals is thought to be relatively safe during its use, considerable proportions of the arsenic from CCA-treated wood can be loaded onto the environment under severe leaching conditions. By burning treated wood without flue gas cleaning 20% to 80% of the arsenic will be emitted to the air. There the arsenic is again present in a form for which a cancerogenic potential has been shown. Waste management problems of treated wood are discussed from a legal, practical and environmental policy point of view, and other sources of emission of arsenic are referred to comparison.  相似文献   

20.
In this study, a sequential extraction procedure (SEP) and X-ray absorption near edge structure (XANES) spectroscopy were used to determine the solid-phase speciation and phytoavailability of arsenic (As) of historically contaminated soils from As containing pesticides and herbicides and soils spiked with As in the laboratory. Brassica juncea was grown in the contaminated soils to measure plant available As in a glasshouse experiment. Arsenic associated with amorphous Fe oxides was found to be the dominant phase using both SEP and XANES spectroscopy. Arsenic predominantly existed in arsenate (As(V)) form in the soils; in a few samples As was also present in arsenite (As(III)) form or in scorodite mineral. Arsenic concentration in shoots showed significant (p < 0.001-0.05) correlations with the exchangeable As (r = 0.85), and amorphous Fe oxides associated As evaluated by the SEP (r = 0.67), and As associated with amorphous Fe oxides as determined by XANES spectroscopy (r = 0.51). The results show that As in both fractions was readily available for plant uptake and may pose a potential risk to the environment. The combination of SEP and XANES spectroscopy allowed us the quantitative speciation of As in the contaminated soils and the identification of valence and mineral forms of As. Such detailed knowledge on As speciation and availability is vital for management and rehabilitation of As-contaminated soils.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号