首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A novel control algorithm for an active power conditioner (APC) is proposed. The operation of this APC can be divided into two modes: active power filter mode and back-up power mode. When the mains are normal, the proposed APC operates in the active power filter mode that provides the functions of active power filter and battery charger. Once the mains have failed, the proposed APC operates in the back-up power mode to supply power to the demands. In this circuit design, the control circuit is suitable for both operation modes except in the arrangement of feedback signals. Hence, the design cost can be reduced; also, no load current sensor is used in the circuit. The practicality of the method is, therefore, further enhanced.  相似文献   

2.
A shunt active filter based on the instantaneous active and reactive current component id-iq method is proposed. This new control method aims to compensate harmonics and first harmonic unbalance. To evaluate its relative performance, it is compared with the instantaneous active and reactive power p-q method under various mains voltage conditions and for different harmonic injection high-pass filters. Both methods are completely frequency-independent, however under distorted mains voltages the proposed method presents a better harmonic compensation performance. The system synthesis and implementation are performed. Simulation and experimental results are presented  相似文献   

3.
A series active power filter working as a sinusoidal current source, in-phase with the mains voltage, has been developed and tested. The amplitude of the fundamental current in the series filter is controlled through the error signal generated between the load voltage and a pre-established reference. The control allows an effective correction of power factor, harmonic distortion and load voltage regulation. Compared with previous methods of control developed for series active filters, this method is simpler to implement because it is only required to generate a sinusoidal current, in-phase with the mains voltage, the amplitude of which is controlled through the error in the load voltage. The proposed system has been studied analytically and tested using computer simulations and experiments. In the experiments, it has been verified that the filter keeps the line current almost sinusoidal and in-phase with the line voltage supply. It also responds very quickly under sudden changes in load conditions, reaching its steady-state in about two cycles of the fundamental  相似文献   

4.
The performance and dynamic characteristics of a three-phase active power filter operating with fixed switching frequency is presented and analyzed in this paper. The proposed scheme employs a PWM voltage-source inverter and has two important characteristics. First, it operates with fixed switching frequency, and second, it can compensate the reactive power and the current harmonic components of nonlinear loads. Reactive power compensation is achieved without sensing and computing the reactive component of the load current, thus simplifying the control system. Current harmonic compensation is done in time domain. The principles of operation of the proposed active power filter along with the design criteria of the power and control circuit components are discussed in detail. Finally, experimental results obtained from a 5 kVA prototype confirm the feasibility and the features of the proposed system  相似文献   

5.
In this paper, a control algorithm for the performance improvement of three-phase three-wired active power filters under nonideal mains voltages is proposed and analyzed. It begins with an analysis of an instantaneous reactive power algorithm that was previously applied to the three-phase active power filter design. In that design, the circuit performance was found unsatisfactory under nonideal test scenarios. Our proposed design was, therefore, motivated in order to solve such problems. In the proposed scheme, not only was the control circuit simplified, but it also served as a potential candidate for the performance improvement of active filter design. The proposed algorithm has been implemented as a prototype. Results of experimental verification under various scenarios are presented  相似文献   

6.
A simple control technique for three-phase shunt active filters without computation of the reactive current component is presented. A current controller with fast dynamics for an active filter is described. Reactive current is directly controlled without the need for sensing and computing the reactive component of the load current, thus simplifying the control system. Current compensation is done in the time domain, allowing a fast time response. The dc voltage control loop keeps the voltage across the dc capacitor constant. High power factor control by an active filter is described. All control functions are implemented in software using a singlechip microcontroller, thus simplifying the control circuit. Any current-controlled synchronous rectifier can be used as a shunt active filter through only the simple modification of the software and the addition of current sensors. It is shown through experimental results that the proposed controller gives good performance for the shunt active filter.  相似文献   

7.
This paper presents a new control system for a current-source active power filter. The harmonic current compensation is realized using only a feedforward control of the load currents. The LC filter resonance of the converter is damped in an open-loop manner using the dynamic equations of the supply filter. The benefits of the proposed control system are that it is simple and straightforward, the number of measurements and sensors can be minimized, and also that the LC filter size can be optimized according to proper harmonic distortion level of the supply currents without care about the stability issues of the closed-loop system. This usually leads to reduction of the filter size. Also, the changes in fundamental current components of the active filter can be effectively realized when the active power filter can also be used as a fast reactive power compensator. The control system also includes the calculation delay compensation of the digital control system. The control system is realized using a single-chip Motorola MPC555 microcontroller. The tests with the prototype show effective current harmonic compensating performance of the nonlinear loads.  相似文献   

8.
A different circuit configuration for the slip-power recovery system is presented in this paper. A boost chopper is used to connect the diode rectifier to the DC-link voltage, which is composed of a capacitor and a voltage-source inverter (VSI). The diode rectifier gives rise to mains current harmonies of variable frequency, which can present subharmonics, harmonics, and interharmonics that can lead to flicker in the mains. Two simple solutions to this drawback are studied. In the first solution, additional inductances were connected on the AC side of the rotor circuits to increase the overlap angle. In the second solution, the stator current harmonics are compensated by a VSI that can work simultaneously as an inverter and as an active power filter. This system represents a very interesting and useful application for active power filters. The merits of the configuration presented are cost, control simplicity, the possibility of reactive power control over a wide range, and quasi-optimum exploitation of the electrical machine. The characteristics of the proposed system and its control are presented in this paper. It is concluded that, although the system proposed is much simpler than others, it has interesting performance  相似文献   

9.
提出了一种单相并联混合型有源电力滤波器的电路结构.该电路由有源滤波器与基波串联谐振支路并联再与无源滤波电路串联构成,用于抑制非线性整流负载产生的谐波电流流入电源侧.在该电路中,无源滤波器分担大部分抑制谐波和无功补偿的任务,减少了有源滤波器的容量;有源电力滤波器用于改善无源滤波器的滤波效果,抑制它与系统阻抗可能发生的谐振.实验结果表明,该混合型有源滤波器充分发挥了无源滤波器和有源滤波器各自优点,改善了无源滤波器的滤波性能,同时使有源滤波器不再承受基波电压,最大限度地减少了有源滤波器的容量,从而使有源电力滤波器可应用于大功率场合.  相似文献   

10.
文中提出了一种基于有源滤波与光伏发电的并网逆变器的控制方法,在并联型有源电力滤波器的基础上拓展了新能源发电功能,采用电压电流双环对并网逆变直流侧电压和系统电网输出有功电流进行控制。该并网逆变器既可以滤除负载的谐波和补偿负载的无功功率,也可以实现有功功率的有效传输,适于未来微电网中并网逆变器的应用研究。  相似文献   

11.
A new least compensation current technique to detect the harmonic and reactive current for active power filters is presented in this paper. With the technique, a novel active power filter based on the least compensated current control is proposed, in which the measurement of harmonic and reactive current and the generation of compensated current are completed in the same closed-loop. Compared with the existing control methods of active power filter, the proposed method has simpler structure, quicker dynamic, higher reliability and better compensation performance. Simulating and experimental results are provided that verified theoretical predictions and demonstrate the effectiveness of the proposed control method and circuit configuration  相似文献   

12.
In this article, the principle of a novel shunt hybrid active power filter (APF) based on magnetic flux compensation is proposed. The parallel transformer can exhibit nearly zero impedance to harmonic current whereas the zero magnetic flux condition is satisfied for harmonics, which leads harmonic current to flow into the transformer branch. Meanwhile, the transformer can exhibit continuously adjustable impedance to the fundamental current based on fundamental magnetic flux compensation, which works together with the passive power filter to compensate for reactive power. A mathematical model is established for system stability analysis and steady state estimation. The experimental results verify that the performance of the proposed APF is satisfactory in harmonic suppression as well as reactive power compensation.  相似文献   

13.
A passive series, active shunt filter for high power applications   总被引:8,自引:0,他引:8  
This paper presents a hybrid series passive/shunt active power filter system for high power nonlinear loads. This work is motivated by the fact that the ability of a converter to perform effectively as an active filter is limited by the power and the frequency distribution of the distortion for which it must compensate. This system is comprised of a three-phase shunt active filter and series AC line smoothing reactance installed in front of the target load. The proposed system significantly reduces the required shunt active filter bandwidth. The space-vector pulse width modulation (PWM) controller is based on a dead-beat control model. It is implemented digitally using a single 16-bit microcontroller. This controller requires only the supply current to be monitored, an approach different from conventional methods. The paper provides background on the operation of the filter, the details of the power circuit, the details of the control design, representative waveforms, and spectral performance for a filter which supports a 15 kVA phase controlled rectifier load. Experimental data indicate that the active filter typically consumes 2% or less of the average load power, suggesting that a parallel filter is an efficient compensation approach. The spectral performance shows that the active filter brings the system into compliance with IEEE519-1992 up to the 33rd harmonic for an AC line smoothing reactance of 0.13 p.u  相似文献   

14.
A new algorithm for three-phase active power filters is proposed, which is expanded current synchronous detection (ECSD) theory. It can detect the active or the fundamental reactive currents in each phase symmetrically and equally, based on the decomposition of the fundamental reactive component and the harmonics under unbalanced power condition. Nonlinear load is composed of a 2-hp three-phase squirrel-cage-type induction motor and motor drives (inverter). To prove the validity of the proposed ECSD algorithm, some experiments were performed in steady states and transient states under 15% unbalanced power system. A stand-alone-type TMS320C31 digital signal processor (60 MHz) board is employed to calculate and to decompose the power and the current components of nonlinear load. The experimental results show that the active and the fundamental reactive components detected by the proposed theory were balanced and equal in each phase despite an unbalanced power source.  相似文献   

15.
In the case of undistorted and balanced grid voltages, low ratio shunt active power filters (APFs) can give unity power factors and achieve current harmonic cancellation. However, this is not possible when source voltages are distorted and unbalanced. In this study, the cost-effective hybrid active power filter (HAPF) topology for satisfying the requirements of harmonic current suppression and non-active power compensation for industry is presented. An effective strategy is developed to observe the effect of the placement of power capacitors and LC filters with the shunt APF. A new method for alleviating the negative effects of a nonideal grid voltage is proposed that uses a self-tuning filter algorithm with instantaneous reactive power theory. The real-time control of the studied system was achieved with a field-programmable gate array (FPGA) architecture, which was developed using the OPAL-RT system. The performance result of the proposed HAPF system is tested and presented under nonideal supply voltage conditions.  相似文献   

16.
A new hybrid active power filter (APF) topology   总被引:12,自引:0,他引:12  
In this paper, a new hybrid active power filter topology is presented. A higher-voltage, low-switching frequency insulated gate bipolar transistor (IGBT) inverter and a lower-voltage high-switching frequency metal oxide semiconductor field effect transistor (MOSFET) inverter are used in combination to achieve harmonic current compensation. The function of the IGBT inverter is to support utility fundamental voltage and to compensate for the fundamental reactive power. The MOSFET inverter fulfills the function of harmonic current compensation. To further reduce cost and to simplify control, the IGBT and MOSFET inverters share the same DC-link via a split capacitor bank. With this approach harmonics can be cancelled over a wide frequency range. Compared to the conventional APF topology, the proposed approach employs lower dc-link voltage and generates less noise. Simulation and experimental results show that the proposed active power filter topology is capable of compensating for the load harmonics  相似文献   

17.
A simple strategy and low cost control for the switching mode rectifier to work simultaneously as a power factor corrector and an active power filter (APF) to reduce current harmonics drawn from the nonlinear load are analysed and presented in this paper. The principal component of the control circuit is an Intel 80196MC microcontroller that performs the dc bus voltage and line current control. The sliding mode control is used in the current loop to achieve fast line current dynamics. The source currents only are measured in the proposed control scheme instead of both the source and load currents needed in the conventional control approach. A simple proportional-integral control is adopted in the voltage loop to achieve slow dc bus dynamics. The proposed control strategy can achieve a high power factor and low current harmonics. No dedicated APF is needed in the proposed control strategy. To demonstrate the effectiveness of the integrated power factor compensator for elimination of reactive power and current harmonics, software simulation and hardware tests are performed.  相似文献   

18.
针对当前有源滤波器谐波检测算法的精度低、运算量大、实时性差等不足,为了获得更加理想的谐波检测结果,提出了基于最小均方和递归最小二乘的有源滤波器谐波检测算法。首先针对锁相环获取输入信号运算量大、谐波检测时间长的难题,将过负载电流作为参考输入,加快有源滤波器的响应速度,然后基于最小均方算法和递归最小二乘算法快速、准确的实现谐波检测,最后在MATLAB 1204平台对本文算法的有效性和先进性进行了仿真验证性实验。 实验结果表明,本文算法得到了较高的有源滤波器谐波检测精度,能够提高有源滤波器的补偿性能,而且具有较快的动态响应速度,改善了算法的实时性。  相似文献   

19.
A conventional three-phase electric arc furnace causes flicker at the point of common coupling with AC mains. This generally occurs with AC mains having a low short-circuit capacity. The flicker is caused by flucluating reactive power consumption of the furnace. This paper describes a way, through computer simulation, of increasing the dynamic performance of the furnace and keeping reactive power consumption constant. This can be achieved with the addition of a three-phase power controller and a booster transformer to the power source and the introduction of a new control method of regulating the reactive power input. The problem of flicker can thus be minimized. This was experimentally tested on a single-phase model and the results obtained were very satisfying. Due to laboratory facilities, the three-phase testing was not performed  相似文献   

20.
The performance and dynamic characteristics of a three-phase parallel active power filter (APF) with point of the common coupling (PCC) voltage compensation with consideration for an unbalanced load is presented and analyzed in this paper. The proposed scheme employs a pulse-width modulation (PWM) voltage-source inverter and has two operation modes. First, it operates as a conventional active filter with reactive power compensation when PCC voltage is within the 15% voltage drop range. Second, it operates as a voltage compensator when PCC voltage is not within the 15% voltage drop range. Both the APF and the voltage compensator compensate asymmetries caused by nonlinear loads. Finally, the validity of this scheme is investigated through the analysis of simulation and experimental results for a prototype APF system rated at 10 kVA.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号