首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The photo-Fenton degradation of paracetamol (PCT) was evaluated using FeSO4 and the iron complex potassium ferrioxalate (FeOx) as iron source under simulated solar light. The efficiency of the degradation process was evaluated considering the decay of PCT and total organic carbon concentration and the generation of carboxylic acids, ammonium and nitrate, expressed as total nitrogen. The results showed that the degradation was favored in the presence of FeSO4 in relation to FeOx. The higher concentration of hydroxylated intermediates generated in the presence of FeSO4 in relation to FeOx probably enhanced the reduction of Fe(III) to Fe(II) improving the degradation efficiency. The degradation products were determined using liquid chromatography electrospray time-of-flight mass spectrometry. Although at different concentrations, the same intermediates were generated using either FeSO4 or FeOx, which were mainly products of hydroxylation reactions and acetamide. The toxicity of the sample for Vibrio fischeri and Daphnia magna decreased from 100% to less than 40% during photo-Fenton treatment in the presence of both iron species, except for D. magna in the presence of FeOx due to the toxicity of oxalate to this organism. The considerable decrease of the sample toxicity during photo-Fenton treatment using FeSO4 indicates a safe application of the process for the removal of this pharmaceutical.  相似文献   

2.
We compared the prevalence of pathogenic and extended-spectrum beta-lactamase (ESBL) – producing Escherichia coli in effluents of a municipal wastewater treatment plant (WWTP) receiving wastewater from a slaughterhouse. A total of 1248 isolates were screened for the presence of virulence genes associated with enterohemorrhagic E. coli (EHEC) (stx1, stx2, and eae) and extraintestinal pathogenic E. coli (ExPEC) (sfa/focDE, kpsMT K1, hlyA, papEF, afa/draBC, clbN, f17A and cnf). The prevalence of atypical enteropathogenic E. coli (EPEC) was 0.7%, 0.2% and 0.5% in city wastewater, slaughterhouse wastewater and in the treated effluent, respectively. One stx1a and stx2b-positive E. coli isolate was detected in city wastewater. The prevalence of ExPEC was significantly higher in city wastewater (8.4%), compared to slaughterhouse wastewater (1.2%). Treatment in the WWTP did not significantly impact the prevalence of ExPEC in the outlet effluent (5.0%) compared to city wastewater. Moreover, the most potentially pathogenic ExPEC were isolated from city wastewater and from the treated effluent. ESBL-producing E. coli was also mainly detected in city wastewater (1.7%), compared to slaughterhouse wastewater (0.2%), and treated effluent (0.2%). One ESBL-producing E. coli, isolated from city wastewater, was eae-β1 positive. These results showed that pathogenic and/or ESBL-producing E. coli were mainly detected in human wastewater, and at a lesser extend in animal wastewater. Treatment failed to eliminate these strains which were discharged into the river, and then these strains could be transmitted to animals and humans via the environment.  相似文献   

3.
Landfill, a matured and economically appealing technology, is the ultimate approach for the management of municipal solid wastes. However, the inevitable generation of leachate from landfill requires further treatment. Among the various leachate treatment technologies available, advanced oxidation processes (AOPs) are among powerful methods to deal with the refractory organic constituents, and the Fenton reagent has evolved as one promising AOPs for the treatment of leachates. Particularly, the combination of UV-radiation with Fenton's reagent has been reported to be a method that allows both the photo-regeneration of Fe2+ and photo-decarboxylation of ferric carboxylates. In this study, Fenton and photo-Fenton processes were fine tuned for the treatment of leachates from the Colmenar Viejo (Madrid, Spain) Landfill. Results showed that it is possible to define a set of conditions under which the same COD and TOC removals (≈ 70%) could be achieved with both the conventional and photo-Fenton processes. But Fenton process generated an important quantity of iron sludge, which will require further disposal, when performed under optimal COD removal conditions. Furthermore conventional Fenton process was able to achieve slightly over an 80% COD removal from a “young” leachate, while for “old” and ”mixed” leachates was close to a 70%. The main advantage showed by the photo-assisted Fenton treatment of landfill leachate was that it consumed 32 times less iron and produced 25 times less sludge volume yielding the same COD removal results than a conventional Fenton treatment.  相似文献   

4.
Sulphate-reducing biofilm and suspension processes were studied for treatment of synthetic wastewater containing sulphate, zinc and iron. With lactate supplemented wastewater with 170-230mg/l Zn and 58mg/l Fe, the following precipitation rates were obtained: 250 and 350mg/l d for Zn in fluidized-bed (FBR) and upflow anaerobic sludge blanket reactors, respectively, and 80mg/l d for Fe in both reactors with hydraulic retention time of 16h. The effluent Zn and Fe concentrations remained at less than 0.1 mg/l. The alkalinity produced in lactate oxidation increased the initial pH of 2.5-3, resulting in effluent pH of 7.5-8.5. The highest sulphate reduction rate was over 2000 mg/l d. In terms of sulphate reduction, hydrogen sulphide production and effluent alkalinity, the start-up of the FBR with the 10% fluidization rate was superior to the FBRs with 20-30% fluidization rates. With increased loading rates, high recycling rate became an advantage. After process failure caused by intentional overloading, the sulphate reduction partially recovered within 2 weeks. Metal precipitates in the reactors were predominantly FeS2, ZnS and FeS. The metal mass balance was as follows: 73-86% of Zn and Fe accumulated into the reactors and water level adjustors, 14-23% of the metals were washed out as precipitates and 0.05-0.15% remained as soluble metals. Biomass yield in the sulphate-reducing processes was 0.039-0.054g dry biomass (VS or VSS) per g of lactate oxidized or 0.035-0.074g dry biomass per g of sulphate reduced. The results of this work demonstrate that the lactate supplemented sulphate-reducing processes precipitated the metals as sulphides and neutralized the acidity of the synthetic wastewater.  相似文献   

5.
Rangsivek R  Jekel MR 《Water research》2005,39(17):4153-4163
Infiltration of stormwater runoff contaminated with metals is often questionable in several cases due to its long-term potential to cause deterioration of groundwater quality. To ensure the quality of filtrate, a pre-treatment of contaminated runoff is required. This study investigates the processes of copper and zinc ion removal from stormwater runoff using zero-valent iron (ZVI, Fe0). Kinetic and equilibrium tests were performed with laboratory-prepared and in situ stormwater runoff samples collected from roof, street and highway catchments. Based on the results, a substantial portion of Cu2+ is reduced and transformed to insoluble forms of Cu0 and Cu2O. Unlike copper, the adsorption and co-precipitation associated with freshly precipitated iron oxides play important roles for the removal of Zn2+. Investigations under various water quality conditions demonstrated a relatively minor impact on Cu2+ uptake rates. However, the different conditions apparently altered the removal stoichiometry and phases of the copper deposits. The removal rates of Zn2+ increase with higher dissolved oxygen (DO), ionic strength (IS), temperature (T) and pH. Dissolved organic carbon (DOC) in runoff samples forms complexes with metals and Fe2+, thereby kinetically decreasing the metal uptake rates. Furthermore, depending on its composition, a larger molecular weight organic fraction was found to preferentially compete for the adsorption sites. The study demonstrates that ZVI is a promising medium for achieving comparable capacity to a commercial adsorbent like granular ferric hydroxide (GFH). Long-term performance of ZVI, however, may be limited and governed by the formation of non-conductive layers of iron and cuprous oxides.  相似文献   

6.
Liu XW  Sun XF  Li DB  Li WW  Huang YX  Sheng GP  Yu HQ 《Water research》2012,46(14):4371-4378
The electro-Fenton process is efficient for degradation of organic pollutants, but it suffers from the high operating costs due to the need of power investment. Here, a new anodic Fenton system is developed for energy-saving and efficient treatment of organic pollutants by incorporating microbial fuel cell (MFC) into an anodic Fenton process. This system is composed of an anodic Fenton reactor and a two-chamber air-cathode MFC. The power generated from a two-chamber MFC is used to drive the anodic Fenton process for Acid Orange 7 (AO7) degradation through accelerating in situ generation of Fe2+ from sacrificial iron. The kinetic results show that the MFC-assisted anodic Fenton process system had a significantly higher pseudo-first-order rate constant than those for the chemical Fenton methods. The electrochemical analysis reveals that AO7 did not hinder the corrosion of iron. The anodic Fenton process was influenced by the MFC performance. It was also found that increasing dissolved oxygen in the cathode improved the MFC power density, which in turn enhanced the AO7 degradation rate. These clearly demonstrate that the anodic Fenton process could be integrated with MFC to develop a self-sustained system for cost-effective and energy-saving electrochemical wastewater treatment.  相似文献   

7.
Shi LN  Zhang X  Chen ZL 《Water research》2011,45(2):886-892
Bentonite-supported nanoscale zero-valent iron (B-nZVI) was synthesized using liquid-phase reduction. The orthogonal method was used to evaluate the factors impacting Cr(VI) removal and this showed that the initial concentration of Cr(VI), pH, temperature, and B-nZVI loading were all importance factors. Characterization with scanning electron microscopy (SEM) validated the hypothesis that the presence of bentonite led to a decrease in aggregation of iron nanoparticles and a corresponding increase in the specific surface area (SSA) of the iron particles. B-nZVI with a 50% bentonite mass fraction had a SSA of 39.94 m2/g, while the SSA of nZVI and bentonite was 54.04 and 6.03 m2/g, respectively. X-ray diffraction (XRD) confirmed the existence of Fe0 before the reaction and the presence of Fe(II), Fe(III) and Cr(III) after the reaction. Batch experiments revealed that the removal of Cr (VI) using B-nZVI was consistent with pseudo first-order reaction kinetics. Finally, B-nZVI was used to remediate electroplating wastewater with removal efficiencies for Cr, Pb and Cu > 90%. Reuse of B-nZVI after washing with ethylenediaminetetraacetic acid (EDTA) solution was possible but the capacity of B-nZVI for Cr(VI) removal decreased by approximately 70%.  相似文献   

8.
This study investigates biofiltration for the removal of dissolved organic carbon (DOC), pharmaceuticals and personal care products (PPCPs), and for the reduction of non-specific toxicity expressed as baseline toxicity equivalent concentration (baseline-TEQ). Two filtering media, sand and granular activated carbon, were tested. The influence of pre-ozonation and empty-bed contact time (EBCT, from 30 to 120 min) was determined. The experiments were performed at a pilot-scale with real WWTP effluent. A previous study showed that biological activity had developed on the filtering media and dissolved organic removal had reached a steady state before sampling commenced. The results show that biological activated carbon (BAC) has a good potential for the removal of DOC (35-60%), PPCPs (>90%) and baseline-TEQ (28-68%) even without pre-ozonation. On the contrary, the sand shows limited improvement of effluent quality. Varying the EBCT does not influence the performance of the BAC filters; however, dissolved oxygen concentration could be a limiting factor. The performances of the BAC filters were stable for over two years suggesting that the main mechanism of organic matter and PPCPs removal is biodegradation. It is concluded that BAC filtration without pre-ozonation could be implemented as a low cost advanced treatment option to improve WWTP effluent chemical quality.  相似文献   

9.
The aim of the study was to demonstrate the application potential of boron-doped diamond electrodes (BDD) in electrochemical disinfection of biologically treated sewage for direct recycling of domestic wastewater. Discontinuous bulk disinfection experiments with secondary effluents and model solutions were performed to investigate the influence of operating conditions and wastewater parameters on disinfection efficiency and formation of disinfection by-products (adsorbable organically bound halogens, AOX). The inactivation rate accelerates with increasing current density caused by a faster generation of electrochemical oxidants (ECO). It could be shown that the effect of OH radicals in case of the direct electrochemical disinfection of chloride-containing secondary effluents with BDD is negligible because of their fast reaction with typical radical scavengers. The dominating role of electrochemically generated free chlorine in the disinfection process could be explicitly verified. It could be also shown that the disinfection efficiency is strongly affected by the specific wastewater parameters temperature and pH. These effects can be explained by the behaviour of the reactive species. The migration-controlled generation of ECO can be accelerated under turbulent hydrodynamic conditions. The formation of disinfection by-products (AOX) correlates with the introduced electric charge Q applied per volume and is independent of the applied current density.  相似文献   

10.
Kinetics of aniline degradation by Fenton and electro-Fenton processes   总被引:11,自引:0,他引:11  
Anotai J  Lu MC  Chewpreecha P 《Water research》2006,40(9):1841-1847
Aniline degradation at pH 2 by Fenton and electro-Fenton processes was kinetically investigated in this study. Electro-Fenton process was found to be superior to ordinary Fenton process with the current impacts of 1.2 to 3.1 for removal efficiency and 1.2 to 5.8 for degradation rate depending on initial Fe2+ concentration. This is mainly due to the rapid electrochemical regeneration of Fe2+. Overall rate equations for aniline degradation by Fenton and electro-Fenton processes (in units of molar and minute) are: [EQUATION: SEE TEXT]. With current application, aniline degradation rate seems to be autonomous from Fenton's reagent concentrations and approaching a half order with respect to aniline. In addition, for complete removal of 0.01 M aniline, the delay in current supply at the initial stage could save up to one-third of the total energy required by the ordinary electro-Fenton process. As a result, significant reduction in energy consumption and operating cost could be obtained by the current-delay operating mode.  相似文献   

11.
During 8 sampling campaigns carried out over a period of two years, 72 samples, including influent and effluent wastewater, and sludge samples from three conventional wastewater treatment plants (WWTPs), were analyzed to assess the occurrence and fate of 43 pharmaceutical compounds. The selected pharmaceuticals belong to different therapeutic classes, i.e. non-steroidal anti-inflammatory drugs, lipid modifying agents (fibrates and statins), psychiatric drugs (benzodiazepine derivative drugs and antiepileptics), histamine H2-receptor antagonists, antibacterials for systemic use, beta blocking agents, beta-agonists, diuretics, angiotensin converting enzyme (ACE) inhibitors and anti-diabetics. The obtained results showed the presence of 32 target compounds in wastewater influent and 29 in effluent, in concentrations ranging from low ng/L to a few μg/L (e.g. NSAIDs). The analysis of sludge samples showed that 21 pharmaceuticals accumulated in sewage sludge from all three WWTPs in concentrations up to 100 ng/g. This indicates that even good removal rates obtained in aqueous phase (i.e. comparison of influent and effluent wastewater concentrations) do not imply degradation to the same extent. For this reason, the overall removal was estimated as a sum of all the losses of a parent compound produces by different mechanisms of chemical and physical transformation, biodegradation and sorption to solid matter. The target compounds showed very different removal rates and no logical pattern in behaviour even if they belong to the same therapeutic groups. What is clear is that the elimination of most of the substances is incomplete and improvements of the wastewater treatment and subsequent treatments of the produced sludge are required to prevent the introduction of these micro-pollutants in the environment.  相似文献   

12.
13.
研究了高级氧化+SBR组合工艺处理高浓度聚乙二醇(PEG)废水的效果及其影响因素。结果表明,采用芬顿试剂作为高级氧化剂,当FeSO4.7H2O投加量为800 mg/L,H2O2投加量为30 mL/L,反应时间为3.5 h时,CODCr去除率可达到50.5%;生化处理阶段所需采用两级SBR工艺,污泥浓度均为4 000 mg/L,一、二级厌氧及好氧反应时间分别为12和10 h;芬顿试剂氧化和厌氧处理对提高PEG废水的可生化性有明显效果;该组合工艺的出水水质可以达到《污水综合排放标准》(GB 8978—1996)中的二级排放标准。  相似文献   

14.
The overall on-site and off-site greenhouse gas emissions by wastewater treatment plants (WWTPs) of food processing industry were estimated by using an elaborate mathematical model. Three different types of treatment processes including aerobic, anaerobic and hybrid anaerobic/aerobic processes were examined in this study. The overall on-site emissions were 1952, 1992, and 2435 kg CO2e/d while the off-site emissions were 1313, 4631, and 5205 kg CO2e/d for the aerobic, anaerobic and hybrid treatment systems, respectively, when treating a wastewater at 2000 kg BOD/d. The on-site biological processes made the highest contribution to GHG emissions in the aerobic treatment system while the highest emissions in anaerobic and hybrid treatment systems were obtained by off-site GHG emissions, mainly due to on-site material usage. Biogas recovery and reuse as fuel cover the total energy needs of the treatment plants for aeration, heating and electricity for all three types of operations, and considerably reduce GHG emissions by 512, 673, and 988 kg CO2e/d from a total of 3265, 6625, and 7640 kg CO2e/d for aerobic, anaerobic, and hybrid treatment systems, respectively. Considering the off-site GHG emissions, aerobic treatment is the least GHG producing type of treatment contrary to what has been reported in the literature.  相似文献   

15.
In this study, two of our recently developed laboratory scale wastewater treatment systems, fluidised-bed reactor (FBR) using formulated clay mixture absorbents (clay-FBR adsorption) and an annular slurry photoreactor (ASP) using TiO2 impregnated kaolin catalysts (TiO2-K-ASP) were integrated as an adsorption-photocatalysis hybrid process to treat municipal wastewater as alternative secondary and tertiary treatment for wastewater reclamation. Primary effluent from sewage and secondary effluent from a membrane bioreactor treatment process were used to assess chemical removal capabilities of the FBR and ASP systems, and the hybrid process. The formulated clays-FBR system demonstrated the prevailing removal efficiency toward PO43−, NO3 and suspended solids. The TiO2-K-ASP showed superior degradation of dissolved organic content; while the presence of inorganic ions caused a detrimental effect on its performance. The integration of the adsorption and degradation system as a hybrid treatment process resulted in a synergetic enhancement for the chemical removal efficiency. Complete elimination of PO43− content was obtained in the adsorption stage; while 30% and 65% NO3 removal were obtained from the hybrid treatment of the primary and secondary effluents, respectively. The corresponding COD reduction during the photodegradation was further investigated by the high-performance size exclusion chromatography technique, where it revealed the shift of apparent molecular weight of the dissolved organic contaminants toward the smaller region. This present study demonstrated that this adsorption-photocatalysis hybrid technology can be used as a feasible alternative treatment process for wastewater reclamation.  相似文献   

16.
Water resource management should be made from a multidisciplinary perspective. In this sense, economic research into the design and implementation of policies for the efficient management of water resources has been emphasized by the European Water Framework Directive (WFD). Cost-benefit analysis (CBA) is one of the more widely accepted economic instruments since it is a rational and systematic decision-making support tool. Moreover, the wastewater treatment process has significant associated environmental benefits. However, these benefits are often left uncalculated because they have no market value. In this paper, using the concept of shadow price, a quantification of the environmental benefits derived from wastewater treatment is made. Once the environmental benefits are estimated and the economic costs of the treatment processes are known, a CBA is made for each of the wastewater treatment plants (WWTPs) under study. In this way, a useful economic feasibility indicator is obtained for WWTP operation.  相似文献   

17.
Research has shown that exposure to androgens and progestogens can cause undesirable biological responses in the environment. To date, however, no detailed or direct study of their presence in wastewater treatment plants has been conducted. In this study, nine androgens, nine progestogens, and five estrogens were analyzed in influent and final effluent wastewaters in seven wastewater treatment plants (WWTPs) of Beijing, China. Over a period of three weeks, the average total hormone concentrations in influent wastewaters were 3562 (Wujiacun WWTP)-5400 ng/L (Fangzhuang WWTP). Androgens contributed 96% of the total hormone concentrations in all WWTP influents, with natural androgen (androsterone: 2977 ± 739 ng/L; epiandrosterone: 640 ± 263 ng/L; and androstenedione: 270 ± 132 ng/L) being the predominant compounds. The concentrations of synthetic progestogens (megestrol acetate: 41 ± 25 ng/L; norethindrone: 6.5 ± 3.3 ng/L; and medroxyprogesterone acetate: 6.0 ± 3.2 ng/L) were comparable to natural ones (progesterone: 66 ± 36 ng/L; 17α,20β-dihydroxy-4-progegnen-3-one: 4.9 ± 1.2 ng/L; 21α-hydroxyprogesterone: 8.5 ± 3.0 ng/L; and 17α-hydroxyprogesterone: 1.5 ± 0.95 ng/L), probably due to the wide and relatively large usage of synthetic progestogens in medical therapy. In WWTP effluents, androgens were still the dominant class accounting for 60% of total hormone concentrations, followed by progestogens (24%), and estrogens (16%). Androstenedione and testosterone were the main androgens detected in all effluents. High removal efficiency (91-100%) was found for androgens and progestogens compared with estrogens (67-80%), with biodegradation the major removal route in WWTPs. Different profiles of progestogens in the receiving rivers and WWTP effluents were observed, which could be explained by the discharge of a mixture of treated and untreated wastewater into the receiving rivers.  相似文献   

18.
Occurrence and fate of TMDD in wastewater treatment plants in Germany   总被引:1,自引:0,他引:1  
Guedez AA  Püttmann W 《Water research》2011,45(16):5313-5322
The occurrence and fate of 2,4,7,9-tetramethyl-5-decyne-4,7-diol (TMDD) was investigated in four wastewater treatment plants (WWTPs) in Germany. The concentration of TMDD in influents and effluents in the WWTPs ranged from 134 ng/L to 5846 ng/L and from <LOQ to 3539 ng/L correspondingly. Loads determined in influents (10.1 g/d-1142 g/d) and effluents (<LOQ - 425 g/d) indicate that TMDD is partially removed from the wastewater. The elimination rates varied between 33% and 68%. Based on the load analysis, the TMDD effluent discharge of WWTPs investigated varied from 8.29 kg/a to 52.6 kg/a. Day and week profiles were recorded and indicated that TMDD is introduced into the sewage through household and indirect dischargers with high fluctuations. Seasonal variations in the TMDD loads were also analyzed in three of the studied WWTPs. One of the WWTPs demonstrated statistically higher TMDD loads during the warm period (164 g/d) than during the cold period (91.3 g/d), for the others WWTPs any differences could not be established. The input of TMDD during weekends and working days was also studied. The results did not show any significant trend of TMDD discharge into the WWTPs.  相似文献   

19.
Yeon KM  Park JS  Lee CH  Kim SM 《Water research》2005,39(10):1954-1961
This study examined the potential and limitations of a new submerged membrane system coupled with a High-performance Compact Reactor (HCR) to take advantages of both systems. The configuration and installation position in the HCR of the membrane module were thoroughly investigated for the optimum design of a submerged membrane coupled with HCR, e.g., MHCR. Inside the draft tube proved to be better location rather than outside the draft tube or in the degas tank and an open-type configuration of a membrane module has an advantage over a fixed-type configuration in terms of membrane fouling. Comparison of the innovative MHCR with a conventional membrane bioreactor (MBR) was made to identify and prove the superiority of MHCR to MBR with respect to the membrane performance. The MHCR has shown the great potential, particularly for the treatment of wastewater of high organic strength.  相似文献   

20.
The fate of 14 antidepressants along with their respective N-desmethyl metabolites and the anticonvulsive drug carbamazepine (CBZ) was studied in 5 different sewage treatment plants (STPs) across Canada. Using two validated LC-MS/MS analytical methods, the concentrations of the different compounds were determined in raw influent, final effluent and treated biosolids samples. Out of the 15 compounds investigated, 13 were positively detected in most 24-h composite raw influent samples. Analysis showed that venlafaxine (VEN), its metabolite O-desmethylvenlafaxine (DVEN), citalopram (CIT), and CBZ were detected at the highest concentrations in raw influent (up to 4.3 μg L−1 for DVEN). Cumulated results showed strong evidence that primary treatment and trickling filter/solids contact has limited capacity to remove antidepressants from sewage, while activated sludge, biological aerated filter, and biological nutrient removal processes yielded moderate results (mean removal rates: 30%). The more recalcitrant compounds to be eliminated from secondary STPs were VEN, DVEN and CBZ with mean removal rates close to 12%. Parent compounds were removed to a greater degree than their metabolites. The highest mean concentrations in treated biosolids samples were found for CIT (1033 ng g−1), amitriptyline (768 ng g−1), and VEN (833 ng g−1). Experimental sorption coefficients (Kd) were also determined. The lowest Kd values were obtained with VEN, DVEN, and CBZ (67-490 L kg−1). Sorption of these compounds on solids was assumed negligible (log Kd ≤ 2). However, important sorption on solids was observed for sertraline, desmethylsertraline, paroxetine and fluoxetine (log Kd > 4).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号