首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Throughout recent decades, the wastewater treatment industry has identified the discharge of nutrients, including phosphates and nitrates, into waterways as a risk to natural environments due to the serious effects of eutrophication. For this reason, new tertiary treatment processes have abounded; these processes generally utilize physico-chemical and biological methods to remove nutrients from secondary wastewaters. The disadvantages of such methods involve larger reactor volumes, operating costs, and waste sludge production; furthermore, complete nutrient removal is unattainable due to thermodynamic and kinetic limitations. The subject study presents the development and performance of a new phosphate-selective sorbent, referred to as hybrid anion exchanger or HAIX. HAIX combines durability and mechanical strength of polymeric anion exchange resins with high sorption affinity of hydrated ferric oxide (HFO) toward phosphate. HAIX is essentially a polymeric anion exchanger within which HFO nanoparticles have been dispersed irreversibly. Laboratory studies show that HAIX selectively removes phosphate from the background of much higher concentrations of competing sulfate, chloride and bicarbonate anions due to the combined presence of Coulombic and Lewis acid-base interactions. Experimental results demonstrate that HAIX's phosphate-sulfate separation factor is over two orders of magnitude greater than that of currently available commercial ion exchange resins. Additionally, optimal HAIX performance occurs at typical secondary wastewater pH conditions i.e., around 7.5. HAIX is amenable to efficient regeneration and reuse with no noticeable loss in capacity.  相似文献   

2.
Awual MR  Jyo A  Ihara T  Seko N  Tamada M  Lim KT 《Water research》2011,45(15):4592-4600
This study was investigated for the trace phosphate removal at high feed flow rate by ligand exchange fibrous adsorbent. The zirconium(IV) loaded bifunctional fibers containing both phosphonate and sulfonate were used as a highly selective ligand exchange adsorbent for trace phosphate removal from water. The precursory fiber of the bifunctional fibers was co-grafted by polymerization of chloromethylstyrene and styrene onto polyethylene coated polypropylene fiber and then bifunctional fibers were prepared by Arbusov reaction followed by phosphorylation and sulfonation. Phosphate adsorption experimental work was carried out in column approach. Phosphate adsorption increased with decreasing the pH of feed solutions. An increase in the feeds flow rate brings a decrease in both breakthrough capacity and total adsorption. The effect of competing anions on phosphate adsorption systems was investigated. The experimental findings reveal that the phosphate adsorption was not affected in the presence of competing anions such as chloride and sulfate despite the enhancement of the breakthrough points and total adsorption. Due to high selectivity to phosphate species, low concentration level of phosphate (0.22 mg/L) was removed at high feed flow rate of 450 h−1 in space velocity. The adsorbed phosphate on the Zr(IV) loaded fibrous column was quantitatively eluted with 0.1 M NaOH solution and then the column was regenerated by 0.5 M H2SO4 for the next adsorption operation. During many adsorption-elution-regeneration cycles, no measurable Zr(IV) was found in the column effluents. Therefore, the Zr(IV) loaded bifunctional fibrous adsorbent is to be an effective means to treat wastewater to prevent eutrophication in the receiving water bodies for long time without any deterioration.  相似文献   

3.
Column-mode phosphate removal by a novel highly selective adsorbent   总被引:2,自引:0,他引:2  
Zhu X  Jyo A 《Water research》2005,39(11):2301-2308
A phosphoric acid resin RGP was immobilized with zirconium(IV) (Zr(IV)) to investigate its applicability in phosphate removal. When loaded with Zr(IV), RGP was changed into an effective ligand exchanger with phosphate sorption capacity of 0.345 mmol/ml. Little metal leakage was observed. Breakthrough of phosphate sorption depended on solution acidity and phosphate concentration. An increase of solution pH greatly suppressed phosphate removal, but even at pH 8.21, about 56% of the added phosphate (2.8mM) in the feed solution could still be sorbed. Electrolytes in the aqueous solution did not interfere with phosphate sorption; on the contrary, an enhancement effect was observed. Due to the high sorption capacity of Zr(IV)-loaded RGP, low concentration of phosphate can be removed at high flow rate (100 h(-1) in space velocity). The sorbed phosphate on the Zr(IV)-loaded RGP could be quantitatively eluted with 0.5M sodium hydroxide solution. The Zr(IV)-loaded RGP is a promising ligand exchanger for treating wastewater containing trace amounts of inorganic phosphate.  相似文献   

4.
混凝沉淀法去除富营养化景观水体中磷和藻类的试验研究   总被引:1,自引:0,他引:1  
张伟  袁林江 《供水技术》2008,2(3):13-15
考察了采用硫酸铝(Al2(SO4)3·18H2O)和三氯化铁(FeCl3·6H2O)为混凝剂对富营养化景观水中磷和藻类的去除效果,并通过正交试验确定了最佳反应时间、混凝剂投加量和pH值.试验结果表明,两种混凝剂单独使用均可有效去除水中藻类和磷酸盐.Al2(SO4)3比FeCl3更适用于混凝沉淀去除富营养化景观水体中的藻类和磷.  相似文献   

5.
Zeng L  Li X  Liu J 《Water research》2004,38(5):1318-1326
This study explored the feasibility of utilizing industrial waste iron oxide tailings for phosphate removal in laboratory experiments. The experimental work emphasized on the evaluation of phosphate adsorption and desorption characteristics of the tailing material. The adsorption isotherm, kinetics, pH effect and desorption were examined in batch experiments. Five isotherm models were used for data fitting. The three-parameter equations (Redlich-Peterson and Langmuir-Freundlich) showed more applicability than the two-parameter equations (Freundlich, Langmuir and Temkin). A modified equation for calculation of the separation factor using the Langmuir-Freundlich equation constants was developed. The initial phosphate adsorption on the tailings was rapid. The adsorption kinetics can be best described by either the simple Elovich or power function equation. The phosphate adsorption on the tailings tended to decrease with an increase of pH. A phosphate desorbability of approximately 13-14% was observed, and this low desorbability likely resulted from a strong bonding between the adsorbed PO(4)(3-)and iron oxides in the tailings. Column flow-through tests using both synthetic phosphate solution and liquid hog manure confirmed the phosphate removal ability of the tailings. Due to their low cost and high capability, this type of iron oxide tailings has the potential to be utilized for cost-effective removal of phosphate from wastewater.  相似文献   

6.
Phosphate originated from industrial effluents is one of the key factors responsible for eutrophication of the receiving waterways especially in the developing countries such as China. In the current study we proposed a novel process to immobilize nanoparticulate hydrated ferric oxide (HFO) within a macroporous anion exchange resin D-201, and obtained a hybrid adsorbent (HFO-201) for enhanced phosphate removal from aqueous system. The resulting HFO-201 possesses two types of adsorption sites for phosphate removal, the ammonium groups bound to the D-201 matrix and the loaded HFO nanoparticles. The coexisting sulfate anion strongly competes for ammonium groups, which bind phosphate through electrostatic interaction. However, it does not pose any noticeable effect on phosphate adsorption by the loaded HFO nanoparticles, which is driven by the formation of the inner-sphere complexes. Batch adsorption experiments also indicated that HFO-201 exhibits a little higher capacity for phosphate than the commercially available phosphate-specific adsorbent ArsenXnp, which possesses similar structure of HFO-201 and is produced by another patented technique. Fixed-bed column tests indicate that phosphate retention by HFO-201 from the synthetic waters results in the significant decrease of P from 2 mg/L to less than 0.01 mg/L, with the treatment capacity of ∼700 bed volume (BV) per run, while that for D-201 was less than 200 BV under otherwise identical conditions. Such satisfactory performance of the hybrid adsorbent is mainly attributed to the specific affinity of HFO toward phosphate as well as the Donnan membrane effect exerted by the anion exchanger support D-201. Moreover, the exhausted HFO-201 was amenable to efficient in situ regeneration with a binary NaOH-NaCl solution for repeated use without any significant capacity loss. Similar satisfactory results were also observed by using a phosphate-containing industrial effluent as the feeding solution.  相似文献   

7.
Blast furnace slags as sorbents of phosphate from water solutions   总被引:11,自引:0,他引:11  
The paper is focused on the sorption of phosphorus from aqueous solutions by crystalline and amorphous blast furnace slags. Slag sorption kinetics were measured, adsorption tests were carried out and the effect of acidification on the sorption properties of slags was studied. The kinetic measurements confirmed that the sorption of phosphorus on crystalline as well as amorphous slags can be described by a model involving pseudo-second-order reactions. For all slag types, phosphorus sorption follows the Langmuir adsorption isotherm. The acid neutralizing capacities of crystalline and amorphous slags were determined. In the case of the crystalline slags, buffering intervals were found to exist during which the slag minerals dissolve in the sequence bredigite-gehlenite-diaspor. There is a high correlation (R2=0.9989) between ANC3.8 and the saturation capacities of crystalline and amorphous slags.  相似文献   

8.
Exposure to arsenic through drinking water poses a threat to human health. Electrocoagulation is a water treatment technology that involves electrolytic oxidation of anode materials and in-situ generation of coagulant. The electrochemical generation of coagulant is an alternative to using chemical coagulants, and the process can also oxidize As(III) to As(V). Batch electrocoagulation experiments were performed in the laboratory using iron electrodes. The experiments quantified the effects of pH, initial arsenic concentration and oxidation state, and concentrations of dissolved phosphate, silica and sulfate on the rate and extent of arsenic removal. The iron generated during electrocoagulation precipitated as lepidocrocite (γ-FeOOH), except when dissolved silica was present, and arsenic was removed by adsorption to the lepidocrocite. Arsenic removal was slower at higher pH. When solutions initially contained As(III), a portion of the As(III) was oxidized to As(V) during electrocoagulation. As(V) removal was faster than As(III) removal. The presence of 1 and 4 mg/L phosphate inhibited arsenic removal, while the presence of 5 and 20 mg/L silica or 10 and 50 mg/L sulfate had no significant effect on arsenic removal. For most conditions examined in this study, over 99.9% arsenic removal efficiency was achieved. Electrocoagulation was also highly effective at removing arsenic from drinking water in field trials conducted in a village in Eastern India. By using operation times long enough to produce sufficient iron oxide for removal of both phosphate and arsenate, the performance of the systems in field trials was not inhibited by high phosphate concentrations.  相似文献   

9.
Waste water from wet lime(stone) gypsum flue gas desulfurization processes for coal-fired boilers contains suspended solids (gypsum, silica, hydroxides of iron and aluminum) and soluble salts (chlorides and sulfates of calcium, sodium and magnesium). Furthermore, small amounts of heavy metals such as As, Cd, Cr, Cu, Hg, Ni, Pb, Sb, Se and Zn are present in these waste water streams. A treatment method has been developed to remove these heavy metals very efficiently. This method has been based on coprecipitation of metal hydroxides and sulfides. The hydroxide and sulfide precipitates are removed by a coagulation/flocculation technique followed by gravity settling. The coprecipitation can be carried out with sodium hydroxide or with lime. Both cases were investigated in two different pilot plants with synthetically composed waste water and with actual waste water from three different types of wet lime(stone)—gypsum flue gas desulfurization plants (lime—gypsum FGD plants without a prescrubber, one using seawater and another using river water as process water; a limestone—gypsum FGD plant with a prescrubber using river water as process water).  相似文献   

10.
Black (toilet) water contains half of the organic load in the domestic wastewater, as well as the major fraction of the nutrients nitrogen and phosphorus. When collected with vacuum toilets, the black water is 25 times more concentrated than the total domestic wastewater stream, i.e. including grey water produced by laundry, showers etc. A two-stage nitritation-anammox process was successfully employed and removed 85%-89% of total nitrogen in anaerobically treated black water. The (free) calcium concentration in black water was too low (42 mg/L) to obtain sufficient granulation of anammox biomass. The granulation and retention of the biomass was improved considerably by the addition of 39 mg/L of extra calcium. This resulted in a volumetric nitrogen removal rate of 0.5 gN/L/d, irrespective of the two temperatures of 35 °C and 25 °C at which the anammox reactors were operated. Nitrous oxide, a very strong global warming gas, was produced in situations of an incomplete anammox conversion accompanied by elevated levels of nitrite.  相似文献   

11.
Pan B  Zhang Q  Du W  Zhang W  Pan B  Zhang Q  Xu Z  Zhang Q 《Water research》2007,41(14):3103-3111
Selective removal of heavy metals from water has been of considerable concern for several decades. In the present study, the amorphous zirconium phosphate (ZrP) was synthesized and characterized by X-ray photoelectron spectroscopy (XPS), X-ray diffraction (XRD), scanning electron micrography (SEM), thermogravimetric analysis (TGA) as well as pH-titration experiments. Uptake of heavy metals including lead, cadmium, and zinc onto ZrP was studied by using a polystyrene sulfonic-acid exchanger D-001 as a reference sorbent and Ca(2+) as a competing cation due to its ubiquity in natural or industrial waters. The results indicated that the uptake of heavy metals onto ZrP is essentially an ion-exchange process and dependent upon solution pH. In comparison with D-001, ZrP exhibited more favorable sorption of heavy metals particularly in terms of high selectivity, as indicated by the distribution coefficients of ZrP even several orders higher than D-001 towards heavy metals when calcium ion coexisted at a high level in solution. The Fourier transform-infrared (FT-IR) spectroscopic investigation indicated that the uptake of calcium, cadmium, and zinc ions onto ZrP is only driven by the electrostatic interaction, while that of lead ion is possibly dependent upon the inner-sphere complex formation with ZrP. XPS results further elucidated that ZrP displays different sorption affinity towards heavy metals in the same order as selectivity sequence of Pb(2+)>Zn(2+) approximately Cd(2+)>Ca(2+), which can be explained by hard and soft acids and bases (HASB) theory. Moreover, uptake of heavy metals onto ZrP approached to equilibrium quickly and the used ZrP could be readily regenerated for reuse by the dilute HCl solution. Thus, all the results suggest that amorphous ZrP has excellent potential as a sorption material for water treatment.  相似文献   

12.
Sengupta S  Pandit A 《Water research》2011,45(11):3318-3330
Influx of Phosphorus (P) into freshwater ecosystems is the primary cause of eutrophication which has many undesirable effects. Therefore, P discharge limits for effluents from WWTPs is becoming increasingly common, and may be as low as 10 μg/L as P. While precipitation, filtration, membrane processes, Enhanced Biological Phosphorus Removal (EBPR) and Physico-chemical (adsorption based) methods have been successfully used to effect P removal, only adsorption has the potential to recover the P as a usable fertilizer. This benefit will gain importance with time since P is a non-renewable resource and is mined from P-rich rocks. This article provides details of a process where a polymeric anion exchanger is impregnated with iron oxide nanoparticles to effectuate selective P removal from wastewater and its recovery as a solid-phase fertilizer. Three such hybrid materials were studied: HAIX, DOW-HFO, & DOW-HFO-Cu. Each of these materials combines the durability, robustness, and ease-of-use of a polymeric ion-exchanger resin with the high sorption affinity of Hydrated Ferric Oxide (HFO) toward phosphate. Laboratory experiments demonstrate that each of the three materials studies can selectively remove phosphate from the background of competing anions and phosphorus can be recovered as a solid-phase fertilizer upon efficient regeneration of the exchanger and addition of a calcium or magnesium salt in equimolar (Ca/P or Mg/P) ratio. Also, there is no leaching of Fe or Cu from any of these hybrid exchangers.  相似文献   

13.
Excess phosphorus (P) in lakes and rivers remains a major water quality problem on a global scale. As a result, new materials and innovative approaches to P remediation are required. Natural materials and waste byproduct materials from industrial processes have the potential to be effective materials for P removal from surface water. Advantages of natural and waste byproduct materials include their low-cost, abundant supply, and minimal preparation, especially compared with engineered materials, such as ion exchange resins and polymeric adsorbents. As a result, natural and waste byproduct materials are commonly referred to as low-cost materials. Despite the potential advantages of low-cost materials, there are critical gaps in knowledge that are preventing their effective use. In particular, there are limited data on the performance of low-cost materials in surface waters that have high concentrations of natural organic matter (NOM), and there are no systematic studies that track the changes in water chemistry following treatment with low-cost materials or compare their performance with engineered materials. Accordingly, the goal of this work was to evaluate and compare the effectiveness of low-cost and engineered materials for P removal from NOM-rich surface water. Seven low-cost materials and three engineered materials were evaluated using jar tests and mini-column experiments. The test water was a surface water that had a total P concentration of 132-250 μg P/L and a total organic carbon concentration of 15-32 mg C/L. Alum sludge, a byproduct of drinking water treatment, and a hybrid anion exchange resin loaded with nanosize iron oxide were the best performing materials in terms of selective P removal in the presence of NOM and minimum undesirable secondary changes to the water chemistry.  相似文献   

14.
In the present paper a process for removal of ions from wastewater or from washing water of contaminated soil by using the weakly basic water-soluble polymer polyethylenimine (PEI) as chelating agent and the Cu(2+) ion as model in combination with an ultrafiltration process was investigated. The complexing agent was preliminarily tested to establish the best operative conditions of the process. Next, ultrafiltration tests by using five different membranes were realised to check membrane performance like flux and rejection. Finally, the possibility for recovering and recycling the polymer was tested in order to obtain an economically sustainable process. Obtained results showed that complexation conditions depends on pH: indeed, at a pH>6 PEI-Cu(2+) complexes are formed, while at pH<3 the decomplexation reaction takes place. Saturation condition is 0.333 mg Cu(2+)/mg PEI, meaning a ratio PEI/Cu(2+)=3(w/w). UF tests showed good results using the PAN 40 kDa membrane reaching an average copper concentration in the permeate of 2 mg/l and a flux of 135.4 and 156.5l/h.m(2) at 2 and 4 bar, respectively. Metal rejection, permeate flow rate, and possibility to regenerating and recycling the polymer makes the polymer-assisted ultrafiltration process (PAUF) very interesting for metal ion removal from waters.  相似文献   

15.
The removal of lead from drinking water was investigated to develop a point-of-use water filter that could meet the regulation imposed by the new European Directive 98-83 lowering lead concentration in drinking water below 10 μg L−1. The objective of this research was to assess the potential of different adsorbents (zeolites, resins, activated carbon, manganese oxides, cellulose powder) to remove lead from tap water with a very short contact time. To begin, the repartition of the lead species in a tap water and a mineral water was computed with the computer model CHESS. It showed that in bicarbonated waters lead is mainly under lead carbonate form, either in the aqueous or in the mineral phase. Batch experiments were then conducted to measure the equilibrium adsorption isotherms of the adsorbents. Then, for five of them, dynamic experiments in micro-columns were carried out to assess the outlet lead concentration level. Three adsorbents gave rise to a leakage concentration lower than 10 μg L−1 and were then selected for prototypes experiments: chabasite, an activated carbon coated with a synthetic zeolite and a natural manganese oxide. The proposed method clearly showed that the measurement of equilibrium isotherms is not sufficient to predict the effectiveness of an adsorbent, and must be coupled with dynamic experiments.  相似文献   

16.
涂铁陶粒处理含镍废水的实验研究   总被引:1,自引:0,他引:1  
对涂铁陶粒和陶粒作吸附剂的实验进行分析,表明了涂铁陶粒对含镍废水的去除效果更为显著,去除率可提高15%~20%左右,得出了最佳的吸附条件,即温度为室温,pH值范围在4~10,镍与吸附剂重量比为1:400,接触时间为45min。  相似文献   

17.
次氯酸钠氧化法去除水体中亚硝酸盐的应急技术研究   总被引:1,自引:0,他引:1  
采用纯水及原水配制5倍标准限值浓度的NO2-溶液,研究了次氯酸钠氧化法去除水中NO2-的可行性及最佳处理条件。结果表明,次氯酸钠能快速有效地去除NO2-,纯水配水条件下,按有效氯与NO2-物质的量比1∶1投加次氯酸钠,反应20min后,剩余NO2-降至标准限值的一半,去除率达89.1%;原水配水条件下,按有效氯与NO2-物质的量比1.5∶1投加次氯酸钠,反应10min后NO2-小于0.001mg/L,基本被去除。  相似文献   

18.
Arsenic removal from high-arsenic water in a mine drainage system has been studied through an enhanced coagulation process with ferric ions and coarse calcite (38-74 microm) in this work. The experimental results have shown that arsenic-borne coagulates produced by coagulation with ferric ions alone were very fine, so micro-filtration (membrane as filter medium) was needed to remove the coagulates from water. In the presence of coarse calcite, small arsenic-borne coagulates coated on coarse calcite surfaces, leading the settling rate of the coagulates to considerably increase. The enhanced coagulation followed by conventional filtration (filter paper as filter medium) achieved a very high arsenic removal (over 99%) from high-arsenic water (5mg/l arsenic concentration), producing a cleaned water with the residual arsenic concentration of 13 microg/l. It has been found that the mechanism by which coarse calcite enhanced the coagulation of high-arsenic water might be due to attractive electrical double layer interaction between small arsenic-borne coagulates and calcite particles, which leads to non-existence of a potential energy barrier between the heterogeneous particles.  相似文献   

19.
Performances of crosslinked poly(allylamine) resin (PAA) as arsenate (As(V)) adsorbent were studied using a column packed with PAA in hydrochloride form. PAA has a high amino group content of 14.6 mmol/g in free amine form and a high chloride content of 10.2 mmol/g in hydrochloride form. Its wet volumes in water were 4.5 and 3.1 mL/g in hydrochloride and free amine forms, respectively, indicating its high hydrophilicity. Breakthrough capacities for As(V) were evaluated changing conditions of adsorption operations: pH of feeds from 2.2 to 7.0, concentration of As(V) in feeds from 0.020 to 2.0 mM, and feed flow rate from 250 to 4000 h−1 in space velocity. Breakthrough capacities increased from 2.6 to 3.4 mmol/g with a decrease in pH from 7.0 and 2.2, and also from 0.81 to 2.8 mmol/g with an increase in As(V) concentration from 0.020 to 2.0 mM. When feed flow rate increased from 250 to 4000 h−1, breakthrough capacities changed form 3.5 to 0.81 mmol/g. Because of non-Hofmeister anion selectivity behavior of PAA, the interference of chloride and nitrate was minor. Although PAA slightly preferred As(V) to sulfate, the latter more markedly interfered with uptake of As(V) than chloride and nitrate. Competitive uptake of As(V) and phosphate revealed that PAA slightly preferred phosphate to As(V). The adsorbed As(V) was quantitatively eluted with 2 M HCl and PAA was simultaneously regenerated into hydrochloride form. All results were obtained using the same column without change of the packed PAA and any deterioration in column performances for 4 months.  相似文献   

20.
Pan B  Pan B  Chen X  Zhang W  Zhang X  Zhang Q  Zhang Q  Chen J 《Water research》2006,40(15):2938-2946
In the present study, polymer-supported zirconium phosphate (ZrP-CP) was prepared for selective removal of lead from the contaminated water. ZrP-CP was characterized using nitrogen adsorption technique, scanning electron microscope (SEM), and X-ray diffraction (XRD). Lead sorption on ZrP-CP was found to be pH dependent due to the ion- exchange mechanism. Also, ZrP-CP was proved to be more selective than the polystyrene strong-acid cation exchanger D-001 to remove lead ion from water, where other competing cations such as Na(+), Ca(2+), and Mg(2+) ions coexist at high concentrations. Generally, lead sorption isotherms on ZrP-CP can be divided into two distinct regions at different load levels, and isotherms at both regions can be well elucidated by Langmuir model. The distribution coefficients (K(d)) and binding constants (B(L)) obtained experimentally indicated that stronger sorption affinity of ZrP-CP towards the lead ion occurs at a relatively lower load level. Also, lead sorption onto ZrP-CP was found to be an endothermic and entropy-driven process. High selectivity of ZrP-CP towards the lead ion was possibly attributed to the crystal state of zirconium phosphate and a specific interaction between orthophosphate and lead ion. Fixed-bed column runs showed that lead sorption on ZrP-CP could result in a conspicuous decrease of this toxic metal from 0.5 mg/L to below 0.01 mg/L, which is recommended as the standard of drinking water by WHO (the treatment technique standard set by US EPA is 0.015 mg/L). Also, the spent sorbent can be readily regenerated for reuse by dilute HNO(3) or HCl solution.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号