共查询到20条相似文献,搜索用时 15 毫秒
1.
Cadmium(II) and zinc(II) adsorption by the aquatic moss Fontinalis antipyretica: effect of temperature, pH and water hardness 总被引:1,自引:0,他引:1
The biosorption of cadmium(II) and zinc(II) ions onto dried Fontinalis antipyretica, a widely spread aquatic moss, was studied under different values of temperature, initial pH and water hardness. The equilibrium was well described by Langmuir adsorption isotherms. Maximum biosorption capacity of cadmium was independent on temperature and averaged 28.0 mg g(-1) moss, whereas for zinc, capacity increased with temperature, from 11.5 mg g(-1) moss at 5 degrees C to 14.7 mg g(-1) moss at 30 degrees C. Optimum adsorption pH value was determined as 5.0 for both metal ions. Cadmium uptake was unaffected by the presence of calcium ions, but zinc sorption was improved when water hardness increased from 101.1 to 116.3 mg CaCO(3)l(-1). Inversely, as hardness increases, the competition with calcium ions strongly reduces the affinity of the biosorbent for zinc. 相似文献
2.
C.P. Jordão W.L. Pereira D.M. Carari R.B.A. Fernandes R.M. De Almeida M.P.F. Fontes 《The International journal of environmental studies》2013,70(5):719-736
The potential of cattle manure vermicompost and Brazilian soils (whole soils and soils incubated with vermicompost) was assessed for adsorption of heavy metals such as Cu(II) and Cd(II) from aqueous solutions. Experimental data have been fitted to Langmuir and Freundlich isotherms to obtain the characteristic parameters of each model, with R 2 values from 0.89 to 0.99. Based on the maximum adsorption capacity obtained from the Langmuir isotherm the affinity of the studied metals for the vermicompost and soils have been established as Cu(II) > Cd(II). The values of the separation factor, R L, which has been used to predict affinity between adsorbate and adsorbent were between zero and 1, indicating that sorption was very favourable for Cu(II) and Cd(II) in synthetic solution. Addition of vermicompost to soils resulted in higher distribution coefficient, K d, as compared with whole soils. The thermodynamic parameter, the Gibbs energy changes, was calculated for each system and the negative values obtained confirm that the adsorption processes are spontaneous. The ΔG° values for the substrates were between ?2.630±1.41 kJ mol?1 and ?13.700±1.250 kJ mol?1. Adsorption tests from multimetal systems confirm the affinity order obtained in the individual metal tests. The adsorption capacity for Cu(II) measured in individual tests is not reduced by the presence of Cd(II). There is also desorption of Cu(II) and Cd(II) previously bound to vermicompost, whole soils and soils incubated with vermicompost by DTPA. The experiment indicates the importance of cattle manure vermicompost and oxisol amended with vermicompost in relation to Cu(II) and Cd(II) adsorption from aqueous solution. 相似文献
3.
The capacity of ion exchange resins, IRN77 and SKN1, for removal of cobalt from aqueous solution has been investigated under different conditions namely initial solution pH, initial metal-ion concentration, and contact time. The equilibrium data obtained in this study have been found to fit both the Langmuir and Freundlich adsorption isotherms. The adsorption of Co(II) on these resins follows first-order reversible kinetics. The film diffusion of Co(II) in these ion exchange resins was shown to be the main rate limiting step. The studies showed that these cation exchange resins can be used as efficient adsorbent material for the removal of Co(II) from aqueous solutions. 相似文献
4.
In the present study, polymer-supported zirconium phosphate (ZrP-CP) was prepared for selective removal of lead from the contaminated water. ZrP-CP was characterized using nitrogen adsorption technique, scanning electron microscope (SEM), and X-ray diffraction (XRD). Lead sorption on ZrP-CP was found to be pH dependent due to the ion- exchange mechanism. Also, ZrP-CP was proved to be more selective than the polystyrene strong-acid cation exchanger D-001 to remove lead ion from water, where other competing cations such as Na(+), Ca(2+), and Mg(2+) ions coexist at high concentrations. Generally, lead sorption isotherms on ZrP-CP can be divided into two distinct regions at different load levels, and isotherms at both regions can be well elucidated by Langmuir model. The distribution coefficients (K(d)) and binding constants (B(L)) obtained experimentally indicated that stronger sorption affinity of ZrP-CP towards the lead ion occurs at a relatively lower load level. Also, lead sorption onto ZrP-CP was found to be an endothermic and entropy-driven process. High selectivity of ZrP-CP towards the lead ion was possibly attributed to the crystal state of zirconium phosphate and a specific interaction between orthophosphate and lead ion. Fixed-bed column runs showed that lead sorption on ZrP-CP could result in a conspicuous decrease of this toxic metal from 0.5 mg/L to below 0.01 mg/L, which is recommended as the standard of drinking water by WHO (the treatment technique standard set by US EPA is 0.015 mg/L). Also, the spent sorbent can be readily regenerated for reuse by dilute HNO(3) or HCl solution. 相似文献
5.
Surface characteristics of crop-residue-derived black carbon and lead(II) adsorption 总被引:7,自引:0,他引:7
Previous studies demonstrated that black carbon (BC) in soils arising from the burning of crop residues is a highly effective adsorbent for organic contaminants. This work evaluated the adsorptive ability of BC for heavy metals in relation to the BC surface characteristics. Two BC samples, rice carbon (RC) and wheat carbon (WC) isolated from the burning residues of rice straw and wheat straw, respectively, were characterized for their surface properties with reference to a commercial activated carbon (AC). While RC and WC had lower surface areas than AC, the two BC samples possessed higher surface acidities and thus lower pH of the isoelectric points (pH IEP) than AC as indicated by titration, FTIR, and zeta potential measurements. The Pb(II) adsorption by RC and WC was higher than that by AC and increased significantly with increasing pH, suggesting the electrostatic interactions between positive Pb(II) species and negatively charged functional groups on RC and WC as the primary adsorptive forces. A reduction in the total positive charge of Pb(II) species with increasing pH as computed by MINTEQA2 suggested that the deprotonation of surface functional groups of RC and WC was the controlling factor of the adsorption. The Pb(II) adsorption decreased with increasing ionic strength, due to the screening role of Na+ in neutralizing the negative charge of RC and WC. This study demonstrated that BC may be an important adsorbent of heavy metals in soil and that the adsorption may be significantly influenced by environmental conditions. 相似文献
6.
The desorption kinetic of trace elements (Cd, Zn, Co, Mn, Fe, Ag, and Cs) associated with Loire river natural suspended particulate matter (SPM; 0.4-63 microm) was followed up on times varying from 0.5 h to 30 days, from SPM previously contaminated during 1 h, 24 h and 30 days. Long term sorption kinetics indicated that the difference between sorption occurring during the period 0-30 days (time investigated in this study) and the period 0-48 h (time often used for sorption experiments) ranges from few to 25% according to the element. Desorption kinetics show that, whatever the age of the complex formed during the sorption step, the release tends to equilibrium between complexed and dissolved elements equivalent to the equilibrium obtained for sorption after a given time. However, the time to get this equilibrium depends on the aging of the complex and on the element. All the above features indicate different types of complexes formation and strength of the binding according to the age of the complex and according to the element. Using a multi-compartmental model, simulating the transfer of metals between water and different types of particulate sites, the relationships between the parameters describing slow and rapid processes helped in explaining the "aging" effect observed. 相似文献
7.
Y. C. Sharma G. Prasad D. I. Rupainwar 《The International journal of environmental studies》2013,70(4):315-320
The adsorption of Cd(II) onto wollastonite has been reported. Adsorption increased from 55.7 to 93.6% by decreasing the concentration of Cd(II) from 2.0 x 10‐4M to 0.5 x 10‐4M. The rearranged Lagergren equation has been used for dynamic modelling of the process. However, the value of rate constant at 30°C was found to be 3.17 x 10‐2min‐1. Equilibrium modelling was carried out using the Freundlich isotherm equation and constants have been calculated. Thermodynamic studies were carried out and values of standard free energy (?G°), enthalpy (?H°) and entropy (AS°) were calculated at various temperatures. Low temperatures favour the uptake of Cd(II) in the process. 相似文献
8.
The results of preliminary screening tests comparing the total Hg(II) removal capacity of 11 different brands of commercial activated carbon indicated that a very high percent (99–100%) total Hg removal was attained by all types of activated carbon especially at pH 4–5; the percent total Hg(II) removal decreased with pH's 4–5 except activated carbons Nuchar SA and SN which maintained a relatively high percent (>90%) total Hg(II) removal capacity at all pH values. Experiments were then conducted to reveal the mechanisms of Hg(II) removal by Nuchar SA (a powdered carbon). The results show that total Hg(II) removal was brought by two mechanisms: the adsorption and reduction. In order to investigate the kinetics of these two reactions, volatilization by bubbling N2 gas at high flow rate was used to remove the Hg(g) product of the reduction reaction. It was noted that both the adsorption and the reduction/volatilization reactions were highly pH-dependent; at pH approx. <3–4 or > approx. 9–10 the extent of reduction/volatilization reaction superceded the adsorption reaction; whereas in the mid-pH region adsorption reaction dominated the total Hg(II) removal. The rate of adsorption reaction is very fast, reaching equilibrium in a few minutes; the rate of reduction/volatilization follows a linear √t expression. The reduction reaction is more significant with Filtrasorb 400 (H-type carbon) than Nuchar SA (L-type carbon). In the presence of strong chelating agent, ethylenediaminetetraacetate (EDTA), the total Hg(II) removal decreases due partly to the formation of less adsorbably mercuric(II)-EDTA complexes. 相似文献
9.
The influence of the addition of the anionic surfactant sodium dodecyl sulphate (SDS) to the soil-water-linuron system in the herbicide desorption from soils with different organic matter (OM) content to water have been studied. SDS was used at critical micelle concentrations (cmc) of 0.75, 1.50, 5 and 10. The adsorption-desorption isotherms of linuron in aqueous medium and in SDS solutions at concentration of 0.75 cmc fitted the Freundlich adsorption equation for all the soils studied. When the SDS concentration was 1.50 cmc only the desorption isotherms for the soils with OM content < or = 5.40% fit this equation and was not fulfilled by any of the soils when the SDS concentration was 5 or 10 cmc. All the desorption isotherms displayed hysteresis, the hysteresis coefficients of the desorption isotherms in SDS solutions always being lower than those of the desorption isotherms in water. The efficiency coefficients, defined as the relationship between the percentages of linuron desorbed in SDS solution and the percentages of linuron desorbed in water, range from 1.02 to 2.41 in the soil with the lowest OM content, and from 1.91 to 17.1 in the soil with the highest OM content. The results obtained indicate the enhancement of linuron desorption by the addition of SDS surfactant to soil-water system. The efficiency of SDS is seen as from surfactant concentrations below the cmc and varies with the surfactant concentration and with the soil OM content. 相似文献
10.
The removal of Cu(II) by adsorption on fly ash has been found to be concentration, pH and temperature dependent. The kinetics of adsorption indicates the process to be diffusion controlled. The Langmuir constants have been calculated at different temperatures, and the adsorption has been found to be endothermic (ΔH = 15.652 kcal mol?1). The maximum removal is observed at pH 8.0, and variation in adsorption with pH has been explained on the basis of surface ionisation and complexation. 相似文献
11.
This work studies the feasibility of the use of a combined physical-biological remediation procedure for treatment of effluents contaminated with molinate, where the herbicide is removed through adsorption and biodegraded in a subsequent stage, with the regeneration of the adsorbent. In order to select the most adequate absorbent for molinate, different materials were tested, namely pine bark, activated carbon and resin Amberlite XAD-4. Activated carbon and resin Amberlite XAD-4 were the most efficient on the removal of molinate from solutions, although the activated carbon used proved not to be bio-regenerable. It was also observed that factors such as temperature, pH, and conductivity did not affect significantly molinate adsorption onto resin Amberlite XAD-4. Resin Amberlite XAD-4 was successfully bio-regenerated, being observed that biodegradation was mainly dependent on spontaneous desorption of the molinate. After bio-regeneration, the resin could be re-utilised as adsorbent. 相似文献
12.
Flow-through reactors with manganese oxides were examined for their capacity to remove 17α-ethinylestradiol (EE2) at μg L−1 and ng L−1 range from synthetic wastewater treatment plant (WWTP) effluent. The mineral MnO2 reactors removed 93% at a volumetric loading rate (BV) of 5 μg EE2 L−1 d−1 and from a BV of 40 μg EE2 L−1 d−1 on, these reactors showed 75% EE2 removal. With the biologically produced manganese oxides, only 57% EE2 was removed at 40 μg EE2 L−1 d−1. EE2 removal in the ng L−1 range was 84%. The ammonium present in the influent (10 mg N L−1) was nitrified and ammonia-oxidizing bacteria (AOB) were found to be of prime importance for the degradation of EE2. Remarkably, EE2 removal by AOB continued for a period of 4 months after depleting NH4+ in the influent. EE2 removal by manganese-oxidizing bacteria was inhibited by NH4+. These results indicate that the metabolic properties of nitrifiers can be employed to polish water containing EE2 based estrogenic activity. 相似文献
13.
Magnetic binary oxide particles (MBOP) synthesized using chitosan template has been investigated for uptake capacity of arsenic (III). Batch experiments were performed to determine the rate of adsorption and equilibrium isotherm and also effect of various rate limiting factors including adsorbent dose, pH, optimum contact time, initial adsorbate concentration and influence of presence cations and anions. It was observed that uptake of arsenic (III) was independent of pH of the solution. Maximum adsorption of arsenic (III) was ∼99% at pH 7.0 with dose of adsorbent 1 g/L and initial As (III) concentration of 1.0 mg/L at optimal contact time of 14 h. The adsorption equilibrium data fitted well to Langmuir and Freundlich isotherm. The maximum adsorption capacity of adsorbent was 16.94 mg/g. With increase in concentration of Ca2+, Mg2+ from 50 mg/L to 600 mg/L, adsorption of As (III) was significantly reduced while for Fe3+ the adsorption of arsenic (III) was increased with increase in concentration. Temperature study was carried out at 293 K, 303 K and 313 K reveals that the adsorption process is exothermic nature. A distinct advantage of this adsorbent is that adsorbent can readily be isolated from sample solutions by application of an external magnetic field. Saturation magnetization is a key factor for successful magnetic separation was observed to be 18.78 emu/g which is sufficient for separation by conventional magnate. 相似文献
14.
Fabrication of polymer-supported nanosized hydrous manganese dioxide (HMO) for enhanced lead removal from waters 总被引:3,自引:0,他引:3
Qing Su Bingjun Pan Weiming Zhang Xiaoshu Wang Quanxing Zhang 《The Science of the total environment》2009,407(21):5471-5477
In the current study, a new hybrid adsorbent HMO-001 was fabricated by impregnating nanosized hydrous manganese dioxide (HMO) onto a porous polystyrene cation exchanger resin (D-001) for enhanced lead removal from aqueous media. D-001 was selected as a support material mainly because of the potential Donnan membrane effect exerted by the immobilized negatively charged sulfonic acid groups bound to the polymeric matrix, which would result in preconcentration and permeation enhancement of lead ions prior to their effective sequestration by the impregnated HMO. HMO-001 was characterized by scanning electron micrograph (SEM), transmission electron micrograph (TEM), and X-ray diffraction (XRD). Lead adsorption onto HMO-001 was dependent upon solution pH due to the ion-exchange nature, and it can be represented by the Freundlich isotherm model and pseudo-first order kinetic model well. The maximum capacity of HMO-001 toward lead ion was about 395 mg/g. As compared to D-001, HMO-001 exhibited highly selective lead retention from waters in the presence of competing Ca2+, Mg2+, and Na+ at much greater levels than the target toxic metal. Fixed-bed column adsorption of a simulated water indicated that lead retention on HMO-001 resulted in a conspicuous decrease of this toxic metal from 1 mg/L to below 0.01 mg/L (the drinking water standard recommended by WHO). The exhausted adsorbent particles are amenable to efficient regeneration by the binary NaAc-HAc solution for repeated use without any significant capacity loss. All the results validated the feasibility of HMO-001 for highly effective removal of lead from contaminated waters. 相似文献
15.
Coal fly ash, an industrial solid waste, was found to have a good adsorption capacity for mercury(II). Adsorption of mercury(II) on coal fly ash conforms to Freundlich's adsorption model. Several parameters such as time of equilibration, effect of pH, effect of initial concentration of solute, effect of fly ash dose etc. were studied. The maximum adsorption was observed after shaking for 3 h. Solution pH was the most important parameter affecting the adsorption. The optimum pH range was 3.5–4.5. There was total adsorption of mercury below 10 mg l−1. The performance of coal fly ash as an adsorbent was found to be significant when compared with activated powdered charcoal. 相似文献
16.
Enhancement of mercury(II) sorption from water by bituminous coal through chemical pretreatment was explored in the laboratory using batch sorption tests and downflow column studies. Both intensity of sorption and equilibrium sorptive capacity were enhanced significantly following nitric acid and hydrogen peroxide oxidation. Sulfurization and manganese oxide impregnation also showed promise. The chemically pretreated coal sorbents exhibited mercury sorption to a level higher than that accomplished using active carbon. Nitric acid or hydrogen peroxide oxidized or sulfurized coal may well replace active carbon in polishing mercury-laden waste following sulfide precipitation or removing mercury during municipal water treatment. 相似文献
17.
Removal of Cu(II) from aqueous solutions by adsorption process with anatase-type titanium dioxide 总被引:6,自引:0,他引:6
The experiment was performed in the reactor with suspended anatase-type titanium dioxide particles. The adsorption amount increased rapidly with an increasing pH value from pH 2 to 5 and remained constant over pH 5. The adsorption amount of Cu(2+) increased with temperature from 15 degrees C to 40 degrees C. The adsorption equilibrium constant (K(ads)) was 0.854 and adsorption isotherm of Cu(2+) adsorption on titanium dioxide was more suitable in Langmuir adsorption isotherm than in Freundlich isotherm. The adsorption rate was rapid with an increasing number of UV lamps of 254 nm. 相似文献
18.
Multi-component adsorption of Ag(I), Cd(II) and Cu(II) by natural carbonaceous materials 总被引:1,自引:0,他引:1
Adsorption of silver, cadmium and copper from aqueous solutions by natural carbonaceous materials was investigated. The studied series of natural materials (spruce wood, pine bark, cork, peat, fusinite, lignite, oxidised lignite, bituminous coal and anthracite) was extended to include industrial carbon-rich materials: coke, activated carbon F-400 and Multisorb 100. Adsorption was tested on a single-component system and on the binary and ternary mixtures. All the materials used differ in their ability to adsorb selected metals. The adsorption of metals is significantly affected by the presence of other ions in solution. Total metal uptake was considerably higher in a mixture than single-ion adsorption. Chemical reactions, such as precipitation and reduction of metallic silver, play a role in metal uptake by bituminous coal, coke and activated carbon. 相似文献
19.
Hexavalent chromium existing in the effluent is a major concern for the metal-processing plant. In this study, a new method combining nanoparticle adsorption and magnetic separation was developed for the removal and recovery of Cr(VI) from wastewater. The nanoscale maghemite was synthesized, characterized, and evaluated as adsorbents of Cr(VI). Various factors influencing the adsorption of Cr(VI), e.g., pH, temperature, initial concentration, and coexisting common ions were studied. Adsorption reached equilibrium within 15 min and was independent of initial Cr concentration. The maximum adsorption occurred at pH 2.5. The adsorption data were analyzed and fitted well by Freundlich isotherm. Cr(VI) adsorption capacity of maghemite nanoparticles was compared favorably with other adsorbents like activated carbon and clay. Competition from common coexisting ions such as Na+, Ca2+, Mg2+, Cu2+, Ni2+, NO3-, and Cl- was ignorable, which illustrated the selective adsorption of Cr(VI) from wastewater. Regeneration studies verified that the maghemite nanoparticles, which underwent six successive adsorption-desorption processes, still retained the original metal removal capacity. In addition, the adsorption mechanisms were investigated using X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), and Raman spectroscopic techniques. 相似文献
20.
Isamu Saito 《Water research》1984,18(3):319-323
The removal of iron cyano-complex ions [hexacyanoferrate(II) and (III) ions] in a dilute aqueous solution by activated carbon was investigated. The maximum adsorption of iron cyano-complex ions on activated carbon occurred at pH around 3. The hexacyanoferrate(III) ion was more adsorbable than the hexacyanoferrate(II) ion. Activated carbon promoted the oxidation of hexacyanoferrate(II) ion to (III) ion with dissolved oxygen in an acidic solution and the reduction of hexacyanoferrate(III) ion to (II) ion in an alkaline solution. The iron cyano-complex ion adsorbed on activated carbon could be eluted with higher concentrated acidic and alkaline solutions. The degree of elution decreased with an increase in potassium hydroxide concentration, since parts of the iron cyano-complexes on activated carbon were decomposed to form the iron hydroxide and the hexacyanoferrate(II) ion with an alkaline solution. The behavior of iron cyano-complexes in the presence of activated carbon, in the lower pH range (pH < 1) and at higher temperatures (80°C), was discussed. 相似文献