首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Nonaqueous polymer gel electrolytes containing ammonium triflate (NH4CF3SO3) and dimethylacetamide (DMA) with polymethylmethacrylate (PMMA) as the gelling polymer have been synthesized which show high value of conductivity (~ 10-2 S/cm) at 25°C. The conductivity of polymer gel electrolytes containing different concentrations of NH4CF3SO3 shows a small decrease with the addition of PMMA and this has been correlated with the variation of fluidity of these gel electrolytes. The small decrease in conductivity with PMMA addition shows that polymer plays the role of stiffener and this is supported by FTIR results which also indicates the absence of any active interaction between polymer and NH4CF3SO3 in these gel electrolytes.  相似文献   

2.
3.
A polymer gel electrolyte based on poly(methyl methacrylate-butyl acrylate-methacrylic acid)/polyethylene glycol 400 blend (P(MMA-BA-MAA)/PEG400) was successfully prepared by a simple and efficient procedure. The optimal ionic conductivity was achieved to be 3.12 mS cm?1 at the temperature of 30 °C when the electrolyte has the composition of 20 wt% P(MMA-BA-MAA)/PEG400 blend, 0.6 M NaI, and 0.06 M I2 in the solvent γ-butyrolactone (GBL). For tuning the ionic conductivity, various additives were introduced into the polymer gel electrolytes. The measured values of open circuit voltage, short circuit current, and total photovoltaic efficiency indicates that the adding of pyridine (PY) leads to better performance of the final dye-sensitized solar cells (DSSCs), while the adding of Guanidine thiocyante (GuSCN) leads to a worse one. 4-Tert-butylpyridine (TBP) additive takes a more complex effect on the performance of the final DSSCs. For polymer gel electrolyte with 0.5 M pyridine, the final fabricated dye-sensitized solar cell has overall energy conversion efficiency (η) of 3.63 % (0.16 cm2 active area) under AM 1.5 at irradiation of 100 mW cm?2, which reached the level of the liquid electrolyte based device (η = 3.83 % at 0.16 cm2 active area). Meanwhile, this gel electrolyte exhibits well long-term stability. The mechanism analysis revealed the dependences of ionic conductivity on the concentration of polymer and NaI and the temperatures.  相似文献   

4.
《Materials Research Bulletin》2006,41(9):1754-1762
Aqueous sol–gel chemistry routes based on ammonium–hydrogen phosphate as the phosphorus precursor and calcium acetate monohydrate as source of calcium ions have been developed to prepare calcium hydroxyapatite samples with different morphological properties. In the sol–gel processes, an aqueous solutions of ethylene diamine tetra-acetic acid (EDTA) or tartaric acid (TA) as complexing agents were added to the reaction mixture. The monophasic Ca10(PO4)6(OH)2 samples were obtained by calcination of precursor gels for 5 h at 1000 °C. The phase transformations, composition and micro-structural features in the polycrystalline samples were studied by thermoanalytical methods (TGA/DTA), infrared spectroscopy (IR), X-ray powder diffraction analysis (XRD) and scanning electron microscopy (SEM). It was shown that adjusting the nature of complexing agent in the aqueous sol–gel processing can be used to control the morphology of the ceramic samples.  相似文献   

5.
Induction periods were measured for various supersaturated aqueous solutions of ammonium dihydrogen orthophosphate doped with ammounium oxalate monohydrate by the direct vision method. Various critical nucleation parameters were calculated based on classical theory for homogeneous crystal nucleation and the results reported and discussed. The critical nucleation parameters increased with increase in doping concentration.  相似文献   

6.
7.
TMTSF-based (TMTSF = tetramethyltetraselenafulvalene = C10H12Se4) charge-transfer salt nanowires were fabricated using the galvanostatic deposition technique that was assisted by an anodic aluminum oxide (AAO) template. By applying a low current density of 1-2 microA/cm2 for more than one month, nanowire arrays with diameters of approximately 150 nm and lengths of approximately 6 microm were obtained. The length of nanowires can be controlled by the duration of the constant current application. Energy-dispersive X-ray spectroscopic (EDX) analysis confirmed that selenium is one of the main components of the nanowires. The micro-Raman (v3C == C) and FT-IR spectra (v3PF6-, v3BF4-, v3CIO4-) indicated that the nanowire arrays had the (TMTSF)2X (X = PF6, BF4, CIO4) phase. The TEM images and the selected area electron diffraction (SAED) patterns indicate that the nanowires were not single crystals, but the current-voltage characteristic that was measured with the four-terminal method showed the conductivity of the (TMTSF)2PF6 single crystals (sigmaRT = 1.6 S/cm) at room temperature.  相似文献   

8.
In order to clarify the origin of the “Rapid Oscillation” (RO) in (TMTSF)2PF6, we studied the magnetoresistance anisotropy in the Field-Induced Spin Density Wave (FISDW) phase. We have found that in the FISDW insulating state, the Fermi surface is not totally gapped; the remaining 2D metallic pockets are quantized in magnetic field and give rise to the RO. Decreasing temperature does not change the size and orientation of the closed pockets, rather, it causes depopulation of the delocalized states in favor of the localized ones, resulting in the disappearance of the RO.  相似文献   

9.
10.
D.C. electrical conductivity of single crystals of (NH4)2SO4 and CoSiF6·6H2O have shown conductivity jump near their respective structural transition temperature. Activation energy of (NH4)2SO4 has been found to be consistent with the earlier data. However, CoSiF6·6H2O has given prolonged aging effect due to dipolar relaxation and formation of space charge polarisation.σ true andP max have been measured.P max has shown a negative maximum at the transition point. Activation energy of ZnSiF6·6H2O has been found to be comparable with CoSiF6·6H2O.  相似文献   

11.
The multi-instability of the electronic structure of (EDO-TTF)2PF6, where EDO-TTF means ethylene-dioxytetrathiafulvalene, is reviewed. This complex showed the metal–insulator transition at 280 K associated with distinct molecular deformations. The mechanism is interpreted as the cooperation of Peierls transition, charge ordering, and the order–disorder transition of the countercomponent. The charge ordering pattern in the low-temperature phase is of the novel [0, 0, 1, 1] type. The sensitivity of the electronic state to external perturbations is demonstrated applying not only static but also instantaneous stimuli. In the latter case, the photo-induced phase transition is ultrafast and highly efficient. One photon causes the transition of several hundreds of donor molecules in the low-temperature phase to relax into a highly conducting metastable state within about 1.5 ps. In the early stage of the transient state, the charge ordering of the [1, 0, 1, 0] type occurs. As for the chemical modifications of this material, the partial deuteration of this complex increases the metal–insulator transition temperature. The introduction of a methyl group greatly modulates the electronic structure of the complex, i.e. (methyl-EDO-TTF)2X (X=BF4, ClO4) shows a two-dimensional electronic structure. The working hypotheses for developing the systems with multi-instability are described.  相似文献   

12.
The effect of addition of propylene carbonate (PC) and nano-sized fumed silica on the ionic conductivity behaviour of proton conducting polymer electrolytes containing different concentrations of hexafluorophosphoric acid (HPF6) in polyethylene oxide (PEO) has been studied. The addition of PC results in an increase in ionic conductivity, whereas the addition of nano-sized fumed silica improves mechanical strength of electrolytes along with a small increase in ionic conductivity. It was observed that the simultaneous addition of PC and fumed silica results in electrolytes with optimum value of ionic conductivity and other properties.  相似文献   

13.
Abstract

The multi-instability of the electronic structure of (EDO-TTF)2PF6, where EDO-TTF means ethylene-dioxytetrathiafulvalene, is reviewed. This complex showed the metal–insulator transition at 280 K associated with distinct molecular deformations. The mechanism is interpreted as the cooperation of Peierls transition, charge ordering, and the order–disorder transition of the countercomponent. The charge ordering pattern in the low-temperature phase is of the novel [0, 0, 1, 1] type. The sensitivity of the electronic state to external perturbations is demonstrated applying not only static but also instantaneous stimuli. In the latter case, the photo-induced phase transition is ultrafast and highly efficient. One photon causes the transition of several hundreds of donor molecules in the low-temperature phase to relax into a highly conducting metastable state within about 1.5 ps. In the early stage of the transient state, the charge ordering of the [1, 0, 1, 0] type occurs. As for the chemical modifications of this material, the partial deuteration of this complex increases the metal–insulator transition temperature. The introduction of a methyl group greatly modulates the electronic structure of the complex, i.e. (methyl-EDO-TTF)2X (X=BF4, ClO4) shows a two-dimensional electronic structure. The working hypotheses for developing the systems with multi-instability are described.  相似文献   

14.
Connected with the examination of the thermal polycondensation of ammonium paratungstate pentahydrate the chemical and morphological properties of intermediate phases formed during the thermal decomposition of APT have been investigated. We have studied the pH and the turbidity of the aqueous solutions of the intermediate phases, the solubility of the phases, and their rehydratation capability as well as the morphology of the crystallite granules and the grain size distribution. These properties of the original APT have been related to the same properties of the products of decomposition formed between different temperature ranges. The results obtained show unambiguously that each of the above mentioned properties suddenly changes in the temperature range 225 to 250°C. This temperature range coincides with the formation temperature of a new phase called APT II. The most probable formula of APT II is (NH4)8 [H2W13O43(OH)2]·H2O.  相似文献   

15.
The anisotropic transport properties of the spin-density-wave model-com- pound (TMTSF)2PF6 have been studied by dc and microwave methods. According to mean-field theory, the activation energy in the SDW state below TSDW = 12 K is approximately 20–25 K in all directions when measured by dc methods. Microwave experiments along the a, b′ and c* axes reveal that the collective transport, which is considered to be the fingerprint of the spin-density-wave condensate, is present in the a and b′ directions, but not along the least conducting c* axis. In contrast to common quasi one-dimensional models, the density wave also slides in the perpendicular b′ direction. Can this behavior be explained by the nesting properties of the quasi one-dimensional conductor?  相似文献   

16.
Liu D  Qu W  Chen W  Zhang W  Wang Z  Jiang X 《Analytical chemistry》2010,82(23):9606-9610
We provide a highly sensitive and selective assay to detect Hg(2+) in aqueous solutions using gold nanoparticles modified with quaternary ammonium group-terminated thiols at room temperature. The mechanism is the abstraction of thiols by Hg(2+) that led to the aggregation of nanoparticles. With the assistance of solar light irradiation, the detection limit can be as low as 30 nM, which satisfies the guideline concentration of Hg(2+) in drinking water set by the WHO. In addition, the dynamic range of detection is wide (3 × 10(-8)-1 × 10(-2) M). This range, to our best knowledge, is the widest one that has been reported so far in gold nanoparticle (AuNP)-based assays for Hg(2+).  相似文献   

17.
固体聚合物电解质具有质轻、安全、易加工等优点,在锂离子电池中具有极大的应用价值.综述了以偏氟乙烯-六氟丙烯(PVDF-HFP)共聚物为基的聚合物电解质的研究工作,介绍了PVDF-HFP固体电解质的制备方法,分析了影响此聚合物电解质性能的因素,并讨论了PVDF-HFP电解质的改性措施,对今后的发展方向作了简要展望.  相似文献   

18.
A novel microporous polymer electrolyte (MPE) comprising blends of poly(vinylidene fluoride-cohexafluoropropylene) [P(VdF-HFP)] and polyethylene oxide (PEO) was prepared by phase inversion technique. It was observed that addition of PEO improved the pore configuration, such as pore size, pore connectivity and porosity of P(VdF-HFP) based membranes. The room temperature ionic conductivity was significantly enhanced. The highest porosity of about 65% and ionic conductivity of about 7 × 10−4 S cm−1 was obtained when the weight ratio of PEO was 40%. The liquid electrolyte uptake was found to increase with increase in porosity and pore size. However, at higher weight ratio of PEO (> 40%) porosity, pore size and ionic conductivity was decreased. This descending trend with further increase of PEO weight ratio was attributed to conglomeration effect of PEO at the pores.  相似文献   

19.
Solid-state reactions in V x O y (NH4VO3)-P2O5 and V x O y (NH4VO3)-(NH4)2HPO4 closed systems can be used to synthesize vanadyl hydrogen phosphate at 300°C and a variety of ammonium vanadium phosphates at lower and higher temperatures.  相似文献   

20.
PMMA基凝胶聚合物电解质研究进展   总被引:1,自引:0,他引:1  
李忠阳  戴晓兵  付人俊  陈红征  汪茫 《功能材料》2004,35(Z1):2057-2061
综述了聚甲基丙烯酸甲酯(PMMA)基凝胶聚合物电解质(GPE)的研究进展,提出了PMMA基凝胶电解质目前主要存在的问题,着重讨论了采用共聚共混、交联和添加无机填料等对PMMA进行改性的方法,以及PMMA基GPE的三种制备方法.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号