首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
Kss1 protein kinase, and the homologous Fus3 kinase, are required for pheromone signal transduction in Saccharomyces cerevisiae. In MATa haploids exposed to alpha-factor, Kss1 was rapidly phosphorylated on both Thr183 and Tyr185, and both sites were required for Kss1 function in vivo. De novo protein synthesis was required for sustained pheromone-induced phosphorylation of Kss1. Catalytically inactive Kss1 mutants displayed alpha-factor-induced phosphorylation on both residues, even in kss1 delta cells; hence, autophosphorylation is not obligatory for these modifications. In kss1 delta fus3 delta double mutants, Kss1 phosphorylation was elevated even in the absence of pheromone; thus, cross-phosphorylation by Fus3 is not responsible for Kss1 activation. In contrast, pheromone-induced Kss1 phosphorylation was eliminated in mutants deficient in two other protein kinases, Ste11 and Ste7. A dominant hyperactive allele of STE11 caused a dramatic increase in the phosphorylation of Kss1, even in the absence of pheromone stimulation, but required Ste7 for this effect, suggesting an order of function: Ste11-->Ste7-->Kss1. When overproduced, Kss1 stimulated recovery from pheromone-imposed G1 arrest. Catalytic activity was essential for Kss1 function in signal transmission, but not for its recovery-promoting activity. Kss1 was found almost exclusively in the particulate material and its subcellular fractionation was unaffected by pheromone treatment. Indirect immunofluorescence demonstrated that Kss1 is concentrated in the nucleus and that its distribution is not altered detectably during signaling.  相似文献   

4.
In the budding yeast, Saccharomyces cerevisiae, four separate but structurally related mitogen-activated protein kinase (MAPK) activation pathways are known. The best understood of these regulates mating. Pheromone binding to receptor informs cells of the proximity of a mating partner and induces differentiation to a mating competent state. The MAPK activation cascade mediating this signal is made up of Ste11 (a MEK kinase [MEKK]), Ste7 (a MAPK/ERK kinase [MEK]), and the redundant MAPK-related Fus3 and Kss1 enzymes. Another MAPK activation pathway is important for cell integrity and regulates cell wall construction. This cascade consists of Bck1 (a MEKK), the redundant Mkk1 and Mkk2 enzymes (MEKs), and Mpk1 (a MAPK). We exploited these two pathways to learn about the coordination and signal transmission fidelity of MAPK activation cascades. Two lines of evidence suggest that the activities of the mating and cell integrity pathways are coordinated during mating differentiation. First, cells deficient in Mpk1 are susceptible to lysis when they make a mating projection in response to pheromone. Second, Mpk1 activation during pheromone induction coincides with projection formation. The mechanism underlying this coordination is still unknown to us. Our working model is that projection formation generates a mobile second messenger for activation of the cell integrity pathway. Analysis of a STE7 mutation gave us some unanticipated but important insights into parameters important for fidelity of signal transmission. The Ste7 variant has a serine to proline substitution at position 368. Ste7-P368 has higher basal activity than the wild-type enzyme but still requires Ste11 for its function. Additionally, the proline substitution enables the variant to transmit the signal from mammalian Raf expressed in yeast. This novel activity suggests that Ste7-P368 is inherently more permissive than Ste7 in its interactions with MEKKs. Yet, Ste7-P368 cross function in the cell integrity pathway occurs only when it is highly overproduced or when Ste5 is missing. This behavior suggests that Ste5, which has been proposed to be a tether for the kinases in the mating pathway, contributes to Ste7 specificity and fidelity of signal transmission.  相似文献   

5.
6.
7.
8.
9.
10.
11.
Binding of the MIG1 repressor to the glucose-repressible GAL1 and GAL4 promoters was analyzed in vivo by cyclobutane dimer footprinting in two yeast strains that show different glucose repression responses. Mig1p binding to the two promoters in both strains was glucose-induced. In cells subject to rapid and stringent glucose repression (S288c), long-term Mig1p binding in glucose-grown cells was inhibited by the formation of a competing chromatin structure. Under conditions where glucose repression was only partially effective (gal80 - or low glucose), the chromatin structure did not form and long-term Mig1p binding was observed The same long-term binding of Mig1p was seen in cells of a different strain (W303A) that shows only partial glucose repression of the GAL1 promoter. We conclude from these experiments that Mig1p binding to glucose-repressed promoters is glucose-dependent but transient. We suggest that Mig1p functions at an early step in repression, but is not required to maintain the repressed state.  相似文献   

12.
Ste5 is a scaffold for the mitogen-activated protein kinase (MAPK) cascade components in a yeast pheromone response pathway. Ste5 also associates with Ste4, the beta subunit of a heterotrimeric guanine nucleotide-binding protein, potentially linking receptor activation to stimulation of the MAPK cascade. A RING-H2 motif at the Ste5 amino terminus is apparently essential for function because Ste5(C177S) and Ste5(C177A C180A) mutants did not rescue the mating defect of a ste5Delta cell. In vitro Ste5(C177A C180A) bound each component of the MAPK cascade, but not Ste4. Unlike wild-type Ste5, the mutant did not appear to oligomerize; however, when fused to a heterologous dimerization domain (glutathione S-transferase), the chimeric protein restored mating in an ste5Delta cell and an ste4Delta ste5Delta double mutant. Thus, the RING-H2 domain mediates Ste4-Ste5 interaction, which is a prerequisite for Ste5-Ste5 self-association and signaling.  相似文献   

13.
Repression of the divergent nagE - B operons requires NagC binding to two operators which overlap the nagE and nagB promoters, resulting in formation of a DNA loop. Binding of the cAMP/CAP activator to its site, adjacent to the nagE operator, stabilizes the DNA loop in vitro. The DNA of the nagE-B intergenic region is intrinsically bent, with the bend centred on the CAP site. We show that displacement of the CAP site by 6 bp results in complete derepression of the two operons. This derepression is observed even in the absence of cAMP/CAP binding and despite the fact that the two NagC operators are still in phase, demonstrating that the inherently bent structure of the DNA loop is important for repression. Since no interaction between NagC and CAP has been detected, we propose that the role of CAP in the repression loop is architectural, stabilizing the intrinsic bend. The cAMP/CAP complex is necessary for activation of the nagE-B promoters. In this case protein-protein contacts between CAP and RNA polymerase are necessary for full activation, but at least a part of the activation is likely due to an effect of CAP binding altering DNA structure.  相似文献   

14.
15.
16.
17.
18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号