首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
为探讨台阶式溢洪道水流压强特性,结合青藏高原某水库,采用物理模型试验方法对高海拔地区台阶式溢洪道时均压强、脉动压强等特性进行了系统研究。结果表明:台阶式溢洪道水平面时均压强和脉动压强变化规律基本一致,从台阶凹角向凸角方向先有所减小,后逐渐增大,当流量较小时,时均压强在初始台阶会出现负值;台阶竖直面负压区范围超过整个台阶高度的一半,脉动压强在台阶顶角处较大;台阶式溢洪道时均压强和脉动压强沿程交替出现波峰和波谷,呈波浪状变化,总体上随流量的增大而增大,改变台阶尺寸,其值也发生变化;台阶式溢洪道脉动压强是随时间变化的平稳各态历经的随机过程,脉动优势频率为0~2 Hz,属低频振动,其概率密度为偏态分布,不会危害泄水建筑物安全。  相似文献   

2.
为研究台阶式溢流坝不设反弧段连接时消力池底板压强特性,结合某水库实际工程,采用物理模型试验方法,对台阶式溢流坝消力池底板时均压强、脉动压强强度和峰值等压强特性进行了研究。结果表明,消力池底板时均压强均为正值;在滑行水流和过渡水流时,时均压强在水流冲击区出现一个较大值,最大为0.926kPa,下游反弹区形成极小值;在跌落水流时,时均压强沿程变化较小,且随流量的增加而增大;脉动压强强度和峰值沿程变化规律基本一致,总体上随流量的增加而增大,最大值出现在水流冲击区,脉动压强最大为1.198kPa,随后沿下游方向逐渐减小,并趋于稳定;台阶尺寸对消力池底板时均压强和脉动压强影响不大;消力池内脉动优势频率为0.01~4 Hz,属低频振动,不会危害泄水建筑物的安全。研究成果可为台阶式溢流坝消力池的优化设计提供参考。  相似文献   

3.
台阶式溢洪道滑行水流压强特性的试验研究   总被引:10,自引:1,他引:9  
模型试验表明,台阶式溢洪道滑行水流压强在台阶上的分布规律是:在水平面,压强从台阶凹角向凸角先逐渐减小,其最小值在距凹角(0.3~0.5)倍步长处,然后开始回升,至(0.7~0.9)倍步长处压强升至最大,在凸角处又有所降低。竖直面,从凹角向上压强值由大逐渐减小,在步高为(0.5~1.0)范围内为负压区,负压值沿高度方向逐渐增大,至凸角下缘负压值最大。在沿程方向,压强呈波浪式分布,在相邻台阶上出现波峰和波谷。脉动压强强度和压强系数的变化规律与时均压强一致,且随来流量和台阶坡度增大而增大,在x/L1≤0.4~0.5以前脉动压强强度沿程增大,随后有所减小。脉动压强的优势频率在0~2Hz之间,概率密度为偏态分布。  相似文献   

4.
水流比能是一个非常重要的水力参数,引入剩余能量,分析得出台阶溢洪道水流比能与剩余能量的关系,结合斯木塔斯水电站台阶式溢洪道模型试验,研究了台阶溢洪道水流比能在不同单宽流量、台阶高度条件下的沿程变化规律。试验结果表明:在满足滑行水流的条件下,台阶式溢洪道水流比能沿程先增大后稳定,该稳定值等于溢洪道出口的剩余能量;剩余能量随单宽流量的增大而增大,随台阶高度的增加而减小。同时给出坡比为11.25的台阶溢洪道剩余能量和消能率的计算式。  相似文献   

5.
由于台阶式溢洪道结构特殊,流态复杂,对台阶式溢洪道压强并未取得一致性的研究成果。对多个台阶式溢洪道滑掠流时均压强资料进行分析,探讨来流流量、掺气、台阶尺寸、溢洪道坡度等对台阶式溢洪道时均压强的影响。分析结果表明单宽流量大,时均压强变大;掺气可有效降低正压时均压力并增加负压值;台阶尺寸对台阶式溢洪道的影响较为复杂,台阶尺寸较小,且坡度较缓时竖直面压强呈中间小、两头大分布,坡度较大时具有2个压力极小值,位于竖直面底部和顶部,台阶尺寸较大时竖直面压强自下而上呈减小趋势;坡度增加,台阶式溢洪道压强变化幅度增大。  相似文献   

6.
带尾坎的阶梯溢洪道是一种新兴的阶梯溢洪道,在一定条件下可提高掺气效果和消能率,但是对于该种溢洪道内水流三维结构、压强分布以及尾坎参数对相关水力学指标的影响的研究甚少。为此,采用三维紊流数值模拟的方法计算了不同尾坎高度的阶梯溢洪道内水流流态、压强分布、流场结构、旋涡结构、消能效果等。研究结果表明:增加尾坎高度会抬升水面高程,但对水面形态影响较小;台阶水平面上压强分布呈"凹"形曲线,最小值出现在台阶中部,台阶竖直面压强最小值出现在其顶部,且台阶水平面、竖直面上压强均随尾坎高度增大而增大;旋涡强度和尺度随着尾坎高度增大而增大,但是主流流速分布无明显变化;消能率随尾坎高度增大呈上升趋势,但是变幅较小。  相似文献   

7.
为了深入研究台阶式溢洪道水流特性,通过利用FLUENT软件,采用标准k-ε紊流模型模拟湍流流场和VOF模型追踪自由水面的方法对某水库台阶式溢洪道流场进行数值模拟,得到了台阶式溢洪道的自由水面、水流流场、压强分布等水力特性,并与物理模型试验结果进行对比.结果表明:计算值与实测值吻合较好,数值模拟能够快捷获得更加全面的流场信息;同时发现,台阶内存在漩涡,紊动能和紊动耗散率较大,台阶水平面存在压强峰值,而垂直面出现负压区,可为台阶式溢洪道的优化设计提供可靠的参考依据.  相似文献   

8.
台阶式溢洪道中凹角水流的循环及能量交换是泄洪消能的关键因素之一,目前台阶式溢洪道的研究多集中在台阶的坡度、尺寸以及与宽尾墩等联合运用方面,鲜有对台阶凹角几何形状进行研究。通过水工模型试验和数值模拟计算,对传统三角形凹角台阶和新型梯形凹角台阶的流态、掺气浓度、压强、流速等水力特性进行研究,结果表明:梯形凹角台阶与三角形凹角台阶水流水力特性分布规律相同,但由于梯形凹角台阶改变了旋涡脱落的形状,漩涡脱落进入主流中,促进水流湍动,使得初始掺气点位置略微前移,增加主流区断面平均掺气浓度,提高虚拟底板处总压强波动强度,降低台阶沿程流速,有利于提高台阶抗空化空蚀能力和促进台阶消能。  相似文献   

9.
台阶式溢洪道滑行水流时均压强特性研究   总被引:1,自引:0,他引:1  
通过模型试验,对台阶式溢洪道滑行水流的时均压强特性进行了研究,探讨了台阶上时均压强的产生和变化规律。同时探讨了来流量、台阶尺寸等因素对台阶上压强变化的影响。对于工程的设计,施工都具有很好的参考价值。  相似文献   

10.
为研究台阶式溢洪道的消能规律,明确台阶式溢洪道的最优消能率参数,利用DualSPHysics对台阶式溢洪道水流特征进行模拟,并通过与典型案例的对比分析验证了SPH方法对台阶式溢洪道水流模拟的适用性与准确性,模拟结果表明SPH方法可以较好地模拟台阶式溢洪道上的水流特征。通过建立不同单宽流量、台阶段坡度和台阶数目的共计288种工况对台阶式溢洪道消能规律及其影响因素进行了研究。结果表明:在其他条件一定的情况下,台阶式溢洪道的消能率与单宽流量呈负相关关系;台阶数目对台阶式溢洪道消能率的影响并不显著,但是存在一个台阶数目能使台阶式溢洪道的消能率达到最大值,该最优消能率对应的台阶数目在78~81阶范围内,此结论对指导实际工程应用有一定的参考价值。  相似文献   

11.
台阶式溢洪道利用台阶改变水流方向,导致水流动能耗散,对提高溢洪道消能效果具有重要意义。与光滑溢洪道相比,台阶式溢洪道的消能率更高,因此在水利工程中得到广泛应用。台阶式溢洪道消能效果主要用消能率衡量,与光滑溢洪道比,台阶式溢洪道的水力参数更加复杂。采用室内试验与理论分析耦合方法,分析了台阶式溢洪道台阶高度、流量、坡度对消能率的影响。研究表明:其它参数相同时,台阶式溢洪道长度增加,消能率增加;单宽流量增加,消能率减小;台阶高度增加,消能率增加。  相似文献   

12.
为了探究高海拔地区台阶式溢洪道水力特性,对坝顶位于海拔 2 586.0 m,斜坡角度 θ=32° 的某大坝台阶式溢洪道进行了模型试验。通过改变来流流量,研究了 3 种不同工况下溢洪道台阶竖直面及水平面时均压强、水面线、流速、脉动压强等水力特性。结果表明:在 3 种试验工况下,台阶式溢洪道不仅具有较高消能率,而且不会发生空化空蚀破坏;溢洪道竖直面及水平面压力沿程为跳跃式分布;水深及流速在台阶溢洪道上达到某一值后,基本稳定。该结果可为高海拔地区的台阶式溢洪道优化设计提供参考依据。  相似文献   

13.
台阶式溢洪道的消能特性是研究的热点方向,而单纯的台阶式溢洪道消能率并不能有效反映台阶在消能方面的价值。将台阶式溢洪道和同体形光滑溢洪道的消能规律进行对比,可以准确反映出台阶结构对水流消能的贡献。通过对26.56°、38.66°、51.30°三组坡度,0.5、1.0、2.0 m三种台阶高度的台阶式溢洪道进行水工模型试验研究,探讨了不同台阶高度(d)、单宽流量(q)、坡度(θ)下相对消能率(Δη)和台阶流程长度与水深比(L/h)的关系。结果表明:台阶水流为滑行流态时,在非均匀流段上相对消能率和台阶流程长度与水深比呈线性关系,复相关系数R~2在0.984 6~0.996 2之间,直线斜率随单宽流量、台阶高度、坡度的增大而增大。试验分析证实了研究相对消能率的必要性,Δη和L/h的线性关系为进一步探究台阶的消能特性提供了依据。  相似文献   

14.
台阶式溢洪道与常规的光滑溢洪道比较,具有消能率高和施工方便等优点,尤其是在中小单宽流量下其消能优势更为显著。通过台阶式溢洪道的模型试验结果分析得出,同一单宽流量下不同台阶高度的消能率随流程增大基本呈线性增大,台阶高度增大对消能率的影响很有限;在任意单宽流量下,消能率随流程或台阶数量的增加逐渐增大;同一台阶高度时,消能率随单宽流量的增加而减小。台阶高度越大消能率越大,台阶高度对消能率影响越显著。  相似文献   

15.
为了研究台阶式溢洪道上水流能量特性,对坡比1:1.25不同台阶高度的台阶溢洪道进行模型试验,试验结果表明:台阶溢洪道上总水头沿程急剧降低;水流比能表现出沿程先增大后达到稳定值的规律;水流比能的变化决定总水头的变化,比能稳定值越小说明台阶溢洪道的消能效果越好。通过无量纲分析得出稳定比能与相关影响因子的2个无因次参数,结合试验和相关文献对2个无因次参数拟合,表现出良好的幂函数规律,相关系数为0.994 9~0.997 2。同时得出计算剩余能量和台阶溢洪道总消能率的经验公式,为相关设计提供参考。  相似文献   

16.
台阶式溢洪道是目前研究的热点,台阶消能率和佛汝德数是重要的水力参数。将台阶式溢洪道佛汝德数与对应光滑溢洪道佛汝德数对比,引入相对佛汝德数的概念,准确地反映由于台阶的存在对水流佛汝德数的改变值。通过对0.5,1.0,2.0 m 这3个不同台阶高度,坡度为38.66°的台阶式溢洪道进行试验研究,探讨了相对佛汝德数和相对消能率之间的关系。结果表明非均匀流流态下相对佛汝德数和相对消能率表现出良好线性关系,相关系数为0.992 7~0.998 9。单宽流量不同,相对佛汝德数和相对消能率对应直线的斜率明显不同,其斜率随单宽流量加大而增大;而台阶高度变化对相对佛汝德数和相对消能率线性关系的直线斜率影响很小。  相似文献   

17.
采用VOF方法,结合RNGκ-ε紊流模型和单向流体自由追踪界面对台阶式溢洪道台阶段进行三维数值模拟。通过调整台阶式溢洪道平面布置、台阶级数和台阶尺寸对大华水库坝面溢洪道原设计方案进行优化。结合水工模型试验,分析比较原设计方案与优化方案台阶段水力特性,采用31级台阶、45级台阶、62级台阶三种优化体形后消能率增大,不设过渡段则流速最大值减小,流速最大值均不超过15 m/s。数值模拟计算值与水工模型实测值吻合较好,进一步表明VOF方法适用于台阶式溢洪道台阶段水流流动的三维模拟。  相似文献   

18.
台阶式溢洪道消能率无法详细反映其消能特性,为了突出反映台阶消能作用,从总消能水头中扣除光滑溢洪道原有消能水头得到纯台阶消能部分,计算了单位高度纯台阶消能率,以及台阶消能所占总消能的比重。结果表明:滑行水流的单位高度纯台阶消能率约为0.80%/m~0.83%/m,与单宽流量和台阶数目均无关,随台阶高度增大增幅为4.5%;纯台阶消能所占总消能比重随单宽流量增大而增加,随台阶数目增多而减小;此外,还对单宽流量增加时消能率下降的原因进行了探讨。结果分析表明:大单宽流量消能率下降是由于光滑溢洪道能作用降低而纯台阶消能不变导致的。  相似文献   

19.
马朋辉  胡亚瑾  刘韩生 《水利学报》2020,51(8):997-1007
台阶式溢洪道消能效果显著、能大大减小下游消力池的尺寸、节省工程量和投资,但其水流规律复杂。本文对比研究了台阶式溢洪道和同体型的光滑溢洪道,并引入台阶式溢洪道相对流速、相对弗劳德数、相对消能率等3个相对水力参数。通过模型试验,分析了台阶式溢洪道流速、弗劳德数、消能率等常规水力参数及3个相对水力参数沿程变化规律、相对临界水深及溢洪道坡度对常规及相对水力参数的影响。分析结果表明:台阶式溢洪道常规水力参数沿程呈复杂的曲线变化规律,相对临界水深及坡度对常规水力参数的影响亦较为复杂,不便应用;台阶式溢洪道相对水力参数沿程表现出良好的线性相关关系,相关系数平均值为0.9887~0.9944;相对水力参数均随相对临界水深的增大而减小,随溢洪道坡度的增大而增大。通过对台阶式溢洪道相对水力参数沿程线性规律的定量分析,并结合光滑溢洪道成熟的水力计算理论,可为台阶式溢洪道复杂水力特性计算提供新方法。  相似文献   

20.
《人民黄河》2021,43(9)
通过数值模拟对与X型宽尾墩联合的台阶溢洪道近底水流水力特性进行了研究,并根据实测资料对其结果进行验证,最后结合滑移流流速分布、压强分布以及台阶内水平面与竖直面的压强分布,对近底水流流态进行分析。结果表明:台阶溢洪道滑移流流态下,旋滚区与主流区之间存在过渡区;过渡区下边界为旋滚水流分离点与交汇点的连线,上边界为断面压强分布极大值点连线;沿水流方向,过渡区内流速波动强烈,远离台阶面时波动减弱,至上边界波动消失。台阶铅直面相对高度y/h=0.83~0.91处出现负压,随后向下流动的水流与旋滚区沿铅直面向上流动的水流交汇,形成铅直面y/h=0.56~0.70处压强较大现象。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号