首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
对TDE-85和AG-80环氧树脂进行非等温DSC实验,采用热分析动力学Kinssinger方程对两种树脂体系的放热机理进行分析,得出TDE-85树脂体系的活化能为E=58.9kJ/mol,指前因子A=5.02×10~6s~(-1);AG-80树脂体系的活化能为E=50.4kJ/mol,指前因子A=3.99×10~6s~(-1).根据DSC升温曲线比较了两种树脂的放热起始温度、放热峰顶温度和结束温度,并以此确定了浇注体固化制度.对两种树脂的浇铸体进行弯曲性能测试,测试得出,TDE-85树脂体系浇铸体的弯曲模量达到1580.03MPa,弯曲强度为61.08MPa;AG-80树脂体系的弯曲模量达到了1804.32MPa,弯曲强度为42.64MPa.并采用高倍数码显微镜对断面进行观察,断面形貌显示,AG-80树脂浇铸体断面十分光滑而TDE-85树脂浇铸体断面存在大量水纹状裂纹.  相似文献   

2.
用环氧树脂改性氰酸酯树脂,对改性树脂体系进行了IR、DSC、TGA分析,研究了树脂的浇铸体和玻璃布层压板的几项主要性能.  相似文献   

3.
稀释剂对TDE-85环氧树脂体系性能影响研究   总被引:2,自引:0,他引:2  
采用660、D-410和kz-j01三种活性稀释剂对TDE-85环氧树脂/MDDM固化剂体系进行了改性,研究了稀释剂对树脂胶液及其固化物性能的影响。结果表明,采用三种活性稀释剂分别配制的三个树脂体系胶液的工艺性能得到明显改善,其中660稀释剂改性的树脂配方胶液在30℃下初始粘度为560mPa.s,存放12h后胶液粘度为620mPa.s,胶液适用期长,树脂浇铸体的热变性温度为127℃,拉伸强度为100MPa,拉伸模量为3.9GPa,断裂延伸率为4.8%,弯曲强度为200MPa,弯曲模量为3.2GPa,压缩强度为130MPa,压缩模量3.8GPa,树脂体系的工艺性能和热机械性能能够满足碳纤维湿法缠绕大型复合材料制品对树脂基体的要求。  相似文献   

4.
环氧树脂改性氰酸酯树脂基复合材料   总被引:4,自引:0,他引:4  
用环氧树脂改善氰酸酯树脂的韧性,并借助红外光谱仪、差示扫描量热仪、热失重分析仪,研究了改性树脂浇铸体及其玻璃布层压板的性能。结果表明,改性树脂在保持氰酸酯树脂较高耐热性的同时,韧性有了较大的提高,并且具有较佳的综合性能。  相似文献   

5.
共聚改性氰酸酯树脂及其性能   总被引:21,自引:0,他引:21  
利用环氧树脂和双马来酰亚胺树脂做改性剂,对氰酸酯树脂进行共聚改性,通过对粘度的测量描述了共聚树脂的固化反应情况。性能测试表明内聚改性氰酸酯树脂的冲击强度比纯氰酸酯树脂自聚体提高了2倍多,可达12.3kJ/cm^2,热变形温度高达235℃,并具有优异的介电性能,如10kHz 介电常数为2.25,介电损耗角正切<10^-4。共聚树脂中的配比和固化条件对性能有影响。  相似文献   

6.
环氧树脂改性氰酸酯树脂玻璃布局压板的研制   总被引:4,自引:2,他引:2  
用环氧树脂改性氰酸酯树脂,对改性树脂体系进行了IR、DSC、TGA分析,研究了树脂的浇铸体和玻璃布局压板的几项主要性能。  相似文献   

7.
本文以双酚A型氰酸酯树脂为原料制备了氰酸酯预聚体,通过加入环氧树脂进行改性研究,采用红外光谱(FT-IR)对其结构进行表征。考察了聚合时间、氰酸酯和环氧树脂的不同配比树脂体系力学性能的影响。结果表明:在140 C的条件下,加入0.01%的有机锡类催化剂,当聚合时间为3 h,氰酸酯与环氧树脂质量比为100:10时,体系的弯曲性能最优异,弯曲强度及模量可分别达到121 MPa和3.45 GPa。  相似文献   

8.
在双酚F树脂中分别加入不同质量的711和TDE-85环氧树脂制备了6种环氧树脂体系,并采用聚醚胺和脂环胺复合固化剂固化,对各体系的粘度、固化行为、耐热性及力学性能进行了测试。结果表明,711环氧树脂具有比TDE-85更高的反应活性。在80 g双酚F树脂中加入20 g TDE-85环氧制备的体系具有最佳的综合性能,30℃下的适用期(粘度500 mPa·s)为120 min,玻璃化转变温度102℃,常温下固化物拉伸强度为78.6 MPa,有望用于多种复合材料的RTM成型。  相似文献   

9.
采用差示扫描量热仪研究了不同牌号环氧树脂对双马来酰亚胺/氰酸酯(BMI/CE)树脂体系在不同升温速率下的固化反应。在保持BMI/CE质量比为1/2的前提下,加入同等质量不同牌号环氧树脂,运用Kissinger法、Ozawa法和Crane法求得不同体系的活化能、反应级数等动力学参数。结果表明,用环氧树脂(AG-80)改性的BMI/CE树脂体系的活化能的平均值为81.55kJ/mol,反应级数为0.93;环氧树脂(TDE-85)改性的BMI/CE树脂体系的活化能的平均值为69.25kJ/mol,反应级数为0.92;环氧树脂(TDE-85)改性的BMI/CE树脂体系更有利于固化工艺的实现。  相似文献   

10.
双马来酰亚胺改性氰酸酯树脂及其复合材料   总被引:2,自引:0,他引:2  
制备了一种新型的双马来酰亚胺改性氰酸酯树脂以提高这类树脂的耐热性,力学性能及成型工艺性。对合成的树脂作了流变分析,对其玻纤复合材料进行了力学性能测试和热失重分析,结果表明,当双马树脂达到改性氰酸酯树脂的质量分数的37.5%时,新型改性氰酸酯树脂的5%热失重温度为432℃。改性氰酸酯基复合材料在常温条件下的拉伸强度为492.4 MPa,弯曲强度为526.3 MPa。在200℃时改性氰酸酯基复合材料的拉伸强度为357.3 MPa,弯曲强度为292.7 MPa。该树脂具有良好的加工性,耐热性,力学性能及高温力学保持性。  相似文献   

11.
纤维缠绕用改性氰酸酯树脂体系研究   总被引:1,自引:0,他引:1  
本文采用环氧树脂对氰酸酯树脂进行改性,研究出适合纤维湿法缠绕的改性氰酸酯体系.通过凝胶实验和DSC等方法研究了改性树脂体系的固化性能,以及改性树脂体系粘度随温度和时间的变化趋势,从而确定其纤维缠绕工艺温度、速度等参数及树脂体系的使用期.对改性树脂基体的热性能、介电性能、力学性能以及改性树脂基体与玻璃纤维、碳纤维的界面性能进行了研究.  相似文献   

12.
环氧改性氰酸酯树脂的研究   总被引:7,自引:3,他引:7  
综述采用环氧树脂增韧改性氰酸酯树脂的共聚反应机理、固化催化体系,以及环氧树脂/氰酸酯树脂固化体系的性能和复合材料的性能。环氧树脂与氰酸酯树脂反应生成恶唑啉酮五元环,降低了氰酸酯树脂的交联密度,使韧性提高;催化剂可以明显提高共聚反应速度,改变产物含量;改性后的氰酸酯树脂具有优良的综合力学性能和成型工艺性,且介电性能及耐热/湿热性能无较大损失。  相似文献   

13.
采用环氧树脂(E-51)与氰酸酯树脂共聚以改善氰酸酯树脂的韧性,研究了环氧树脂的加入量,后处理温度、湿热老化以及紫外光老化等条件对改性后树脂体系力学性能的影响规律,采用扫描电子显微镜对断口形貌进行了分析。结果表明环氧树脂可以明显改善氰酸酯树脂的韧性,环氧树脂含量为30%(质量百分数,下同)的体系的冲击强度和弯曲强度分别比改性前提高了100%和50%随环氧树脂用量的增加,改性树脂的冲击强度和弯曲强度提高,树脂表现为明显的韧性断裂;改性体系经2000℃、后处理2h的力学性能最佳;湿热老化和紫外光老化都使改性树脂体系的冲击强度和弯曲强度降低,而后者的影响较弱,当环氧树脂用量低于30%时冲击强度和弯曲强度的保持率均高于95%。  相似文献   

14.
采用差示扫描量热(DSC)法和红外光谱(FT-IR)法对缩水甘油胺型环氧树脂(AG-80)与脂环族缩水甘油酯型环氧树脂(TDE-85)共同改性双马来酰亚胺(BMI)/氰酸酯树脂(CE)的固化反应历程进行了研究,并按照Kissinger和Crane法计算出该改性树脂体系固化反应的动力学参数。结果表明:改性树脂体系的固化反应表观活化能为68.11 kJ/mol,固化反应级数为0.860(接近于1级反应);环氧树脂(EP)可促进CE固化,当固化工艺条件为"150℃/3 h→180℃/2 h"时,改性树脂体系可以固化完全。  相似文献   

15.
制备了四种环氧树脂(E-51、AG-80、AFG-90、TDE-85)及其复合树脂体系的液体丁腈橡胶CTBN改性胶黏剂,研究了这些胶黏剂及加入不同质量的TDE-85和AFG-90后的粘接性能。研究结果表明,TDE-85对改性胶的室温剪切和剥离强度贡献较大,AFG-90对高温剪切强度贡献较大。在TDE-85改性胶(TC-23)和TDE-85/E-51复合树脂改性胶(TEC-23)中,添加10%的AFG-90,可使它们的室温、100℃剪切及室温剥离强度分别达到37.4MPa、16.7MPa,65.4N·cm-1和33.7MPa、18.2MPa,60.0N·cm-1,具有较好的综合性能。  相似文献   

16.
共聚改性氰酸酯树脂   总被引:12,自引:0,他引:12  
用环氧树脂和双马来酰亚胺树脂改性氰酸酯树脂,采用预聚方法制得共聚物,得到了韧性,耐热性及其它性能均较好的改性氰酸酯树脂。  相似文献   

17.
采用双马来酰亚胺封端的硫醚酰亚胺低聚物对氰酸酯树脂进行了改性(SBMI),通过红外光谱对改性树脂(SBT)的结构作了表征,通过流变分析,热失重分析研究了其粘度特性及耐热性,并对其玻纤复合材料的力学性能进行了测试。结果表明,当SBMI质量分数为氰酸酯树脂的的37.5%时,SBT树脂的5%热失重温度为415℃,其复合材料在常温下的拉伸强度为438.8 MPa,弯曲强度为657.3 MPa,断裂伸长率为9.2%;200℃时拉伸强度为310.5 MPa,弯曲强度为307.4 MPa,断裂伸长率为12.5%。该树脂具有良好的加工性,耐热性和力学性能。  相似文献   

18.
利用低介电改性剂对氰酸酯树脂进行改性,制备了石英纤维/改性氰酸酯树脂复合材料,利用SEM表征了树脂及其复合材料的断面,并对改性氰酸酯树脂的耐热性能、力学性能、复合材料的力学性能及透波性能进行了研究。结果表明,改性氰酸酯树脂的玻璃化转变温度达到200℃以上,树脂拉伸破坏表现为韧性断裂,拉伸强度、弯曲强度和压缩强度分别在27MPa、69MPa和148MPa以上;改性氰酸酯树脂和纤维的界面结合良好,复合材料的拉伸强度、弯曲强度和压缩强度分别达到447MPa、461MPa和259MPa以上;在0.5~18GHz范围内,介电常数为3.1~3.3,4mm试样的S21小于-1.6d B。  相似文献   

19.
采用脂环族环氧树脂和双酚F环氧树脂为基体树脂,通过添加稀释剂、增韧剂、芳香胺型固化剂,制备了低粘度、高韧性环氧树脂体系,对该树脂体系的耐热性能及复合材料力学性能进行了研究。结果表明,在40℃时树脂体系粘度为230 mpa·s,操作时间大于8h,浇铸体玻璃化转变温度为132.1℃,拉伸强度为70.72MPa,断裂延伸率为3.09%。通过缠绕工艺制备了复合材料单向板,拉伸强度为2839.06MPa,弯曲强度为1609.49 MPa,力学性能优异。  相似文献   

20.
氰酸酯树脂在高性能印刷电路板中的应用概况   总被引:6,自引:0,他引:6  
综述了氰酸酯树脂及氰酸酯改性环氧树脂在高性能印刷电路板中的应用。论述了氰酸酯改性环氧树脂的机理与性能。以改性树脂基体制备的覆铜板介电性能明显得到提高,能满足高频使用的条件。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号