首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
The lipid classes, fatty acids of total and individual lipids and sterols of Antarctic krill (Euphausia superba Dana) from two areas of the Antarctic Ocean were analyzed by thin layer chromatography (TLC), gas liquid chromatography (GLC) and gas liquid chromatography/mass spectrometry (GLC/MS). Basic differences in the lipid composition of krill from the Scotia Sea (caught in Dec. 1977) and krill from the Gerlache Strait (caught in Mar. 1981) were not observed. The main lipid classes found were: phosphatidylcholine (PC) (33–36%), phosphatidylethanolamine (PE) (5–6%), triacylglycerol (TG) (33–40%), free fatty acids (FFA) (8–16%) and sterols (1.4–1.7%). Wax esters and sterol esters were present only in traces. More than 50 fatty acids could be identified using GLC/MS, the major ones being 14∶0, 16∶0, 16∶1(n−7), 18∶1(n−9), 18∶1(n−7), 20∶5(n−3) and 22∶6(n−3). Phytanic acid was found in a concentration of 3% of total fatty acids. Short, medium-chain and hydroxy fatty acids (C≤10) were not detectable. The sterol fraction consisted of cholesterol, desmosterol and 22-dehydrocholesterol.  相似文献   

2.
The unsaponifiable lipids and total fatty acids of a nonphotosynthetic diatom,Nitzschia alba, have been examined. The major fatty acids were found to be 14∶0, 16∶0, 18∶1, and 20∶5; small amounts of 15∶0, 16∶1, 18∶0, 18∶2, 18∶3, and 20∶4 acids also were present. The unsaponifiable lipids consisted mostly of sterols, with only traces (<0.1%) of hydrocarbons (chiefly C16, C18, and C28 normal olefins). The sterols contained brassicasterol (major) and clionasterol (minor), as well as traces of an unidentified sterol; clionasterol was present only in glycosidically bound form.  相似文献   

3.
The seed oil ofEuphoria longana, Sapindaceae, contains 17.4% of 9,10-methyleneoctadecanoic (dihydrosterculic) acid. This identification is based on information from thin layer chromatography, infrared analysis, gas liquid chromatography, nuclear magnetic resonance and mass spectroscopy. Since GLC of the oil showed components that emerged between the usual triglycerides, the cyclopropanoid acid is apparently a triglyceride constituent. The presence of smaller amounts, less than 1%, of cyclopropanoid fatty acids of different chain lengths is indicated by GLC and TLC analyses of the methyl esters. The other major fatty acids in this oil are: 16∶0 (19%), 18∶0 (7%), 18∶1 (36%), 18∶2 (6%), 18∶3 (5%) and 20∶0 (4%).Euphoria oil contains considerably larger amounts of cyclopropanoid fatty acids than previously reported in other seed oils. Presented at the AOCS-AACC Joint Meeting, Washington, D.C., April 1968. No. Utiliz. Res. Dev. Div.; ARS, USDA.  相似文献   

4.
The lipid class compositions of adult Pacific oysters [Crassostrea gigas (Thunberg)] were examined using latroscan thin-layer chromatography/flame-ionization detection (TLC/FID), and fatty acid compositions determined by capillary gas chromatography and gas chromatography/mass spectrometry (GC/MS). The fatty acid methyl esters were separated using argentation TLC and also analyzed as their 4,4-dimethyloxazoline derivatives using GC/MS. Major esterified fatty acids inC. gigas were 16∶0, 20∶5n−3, and 22∶6n−3. C20 and C22 nonmethylene interrupted (NMI) fatty acids comprised 4.5 to 5.9% of the total fatty acids. The NMI trienoic fatty acid 22∶3(7,13,16) was also identified. Very little difference was found in the proportions of the various lipid classes, fatty acids or sterols between samples of adult oysters of two different sizes. However, significant differences in some of the lipid components were evident according to the method of sample preparation used prior to lipid extraction with solvents. Lyophilization (freeze drying) of samples led to a significant reduction in the amounts of triacylglycerols (TG) extracted by solvents in two separate experiments (7.0 and 52.5% extracted). Extracts from lyophilized samples had less 16∶0, C18 unsaturated fatty acids, and 24-ethylcholest-5-en-3β-ol, while C20 and C22 unsaturated fatty acids comprised a higher proportion of the total fatty acids. There was no significant change in the amounts of polar lipids, total sterols, free fatty acids or hydrocarbons observed in extracts from lyophilized samples relative to extracts from nonlyophilized samples. Addition of water to the freezedried samples prior to lipid extraction greatly improved lipid yields and resulted in most of the TG being extracted.  相似文献   

5.
Lipids of gelatinous antarctic zooplankton: Cnidaria and Ctenophora   总被引:2,自引:0,他引:2  
Antarctic gelatinous zooplankton, including Cnidaria (Calycopsis borchgrevinki, Diphyes antarctica, Stygiomedusa gigantea, Atolla wyvillei, Dimophyes arctica) and Ctenophora (Beroe cucumis, B. forskalii, Pleurobrachia pileus, Bolinopsis infundibulum) were collected near Elephant Island, South Shetland Islands, during January and February 1997 and 1998. Total lipid was low in all zooplankton (0.1–5 mg g−1 wet mass) and included primarily polar lipids (59–96% of total lipid). Triacylglycerols were 0–26% of total lipids, and wax esters were 0–11% in all species. Cholesterol was the major sterol in all Cnidaria (50–63% of total sterols) whereas in most ctenophores it was lower at 26–45%. These cholesterol levels are consistent with a combined carnivorous and phytoplanktivorous diet in the ctenophores, with the carnivorous diet more dominant in the Cnidaria. Other sterols included primarily trans-dehydrocholesterol, desmosterol, 24-methylcholest-5,22E-dien-3β-ol, 24-nordehydrocholesterol, and 24-methylenecholesterol. Total stanols were 0–6% in all zooplankton. Eicosapentaenoic acid and docosahexaenoic acid were the major polyunsaturated fatty acids (PUFA) in all samples (7–25% of total fatty acids) except for A. wyvillei in which docosapentaenoic acid was 10% of total fatty acids. The PUFA 18∶5n−3 was not detected in 1997 samples, but constituted 0.2–0.8% in most 1998 samples. Monounsaturated fatty acids included primarily 18∶1n−9c, 16∶1n−7c, and 18∶1n−7c. The principal saturated fatty acids in all samples were 16∶0, 18∶0, and 14∶0. These data are the first for many of these zooplankton species and the first sterol data for most species. The use of the signature lipid approach has enabled examination of aspects of trophodynamics not obtainable by conventional techniques.  相似文献   

6.
Niger seed samples were collected from different regions in Ethiopia for determination of oil content, and of fatty acid, tocopherol and sterol composition in the seed oil by gas-liquid chromatography and high-performance liquid chromatography methods. There was a large variation in oil content, ranging from 29 to 39%. More than 70% of the fatty acids was linoleic acid (18∶2) in all samples analyzed. The other predominant fatty acids were palmitic (16∶0), stearic (18∶0) and oleic (19∶1) at a range of 6 to 11% each. Total polar lipids recovered after preparative thin-layer chromatography comprised a small fraction of the total lipids. They had higher 16∶0 and lower 18∶2 contents than the triacylglycerols.α-Tocopherol was the predominant tocopherol in all samples, 94–96% of the total amounting to 630–800 μg/g oil. More than 40% of the total sterols wasβ-sitosterol,ca. 2000μg/g oil. The other major sterols were campesterol and stigmasterol, ranging from 11 to 14%. The Δ5- and Δ7-avenasterols were in the range of 4 to 7%. From the samples studied, no conclusion could be drawn regarding the influence of altitude or location on oil content, tocopherol and/or sterol contents. The results of the present study on niger seed oil are discussed in comparison with known data for common oils from Compositae,viz, safflower and sunflower.  相似文献   

7.
The sterol composition of free sterol and steryl ester fractions of the fish parasiteParatenuisentis ambiguus was determined. In addition, the fatty acid composition of various neutral lipid classes, i.e., wax esters, steryl esters, triacylglycerols and free fatty acids, as well as the composition of the 1-O-alkyl moieties of total ether glycerolipids of the parasite, were investigated. The results of these studies were compared with those obtained on the intestinal tract tissue of its host, the eel (Anguilla anguilla). Cholesterol is the major sterol in bothP. ambiguus andA. anguilla. However, the sterols ofP. ambiguus contain high proportions (>20%) of other sterols, such as campesterol and various dehydrosterols. [e.g., 7-dehydrocholesterol and cholesta-5,22(E)-dienol]. The presence of these minor sterols agrees with the known biotransformations of exogenous sterols in various helminths. Considerable differences are found in the fatty acid composition of neutral lipid fractions, as well as the total lipid extract from the endoparasite as compared to the host tissue. In particular, eicosapentaenoic acid (20∶5n−3), other polyunsaturated fatty acids, such as 20∶4n−6, 22∶5n−3 and 22∶6n−3, as well as long-chain saturated fatty acids, such as 20∶0, are generally enriched in the neutral lipid fractions of the parasite as compared to those of infected eel intestine. The analysis of ether glycerolipids revealed that 1-O-hexadecyl (16∶0) and 1-O-hexadecenyl (16∶1) moieties were present in similar proportions in the ether lipids of bothP. ambiguus and eel intestine, whereas 1-O-octadecyl (18∶0) moieties are more prominent in the parasite and 1-O-octadecenyl (18∶1) moieties in the eel. The results of these studies show thatP. ambiguus has specific mechanisms for the regulation of the sterol and fatty acid composition of its neutral lipids. Dedicated to Professor Helmut K. Mangold on the occasion of his 70th birthday.  相似文献   

8.
Milk samples were collected from 11 mothers who were at least 4 weeks postpartum. The amounts of fat and the fatty acid compositions of cholesteryl esters (CE) and triacylglycerols (TG) in the milk were determined. The mean concentration of total milk lipid was 3.01 gm/100 ml of milk±.42 SD. The major fatty acids esterified with CE and TG were 16∶0,cis 18∶1 and 18∶2. The patterns were similar except for a greater proportion ofcis 18∶1 in the CE. The majortrans fatty acid detected was the 18∶1 isomer which accounted for 4.48% of the TG fatty acids and 2.96% of the CE fatty acids. Scientific Contribution No. 821, Storrs Agricultural Experiment Station, University of Connecticu, Storrs, CT. 06268  相似文献   

9.
Lipids of some thermophilic fungi   总被引:1,自引:0,他引:1  
Total lipid content in the thermophilic fungi—Thermoascus aurantiacus, Humicola lanuginosa, Malbranchea pulchella var.sulfurea, andAbsidia ramosa—varied from 5.3 to 19.1% of mycelial dry weight. The neutral and polar lipid fractions accounted for 56.4 to 80.2% and 19.8 to 43.6%, respectively. All the fungi contained monoglycerides, diglycerides, triglycerides, free fatty acids, and sterols in variable amounts. Sterol ester was detected only inA. ramosa. Phosphatide composition was: phosphatidyl choline (15.9–47%), phosphatidyl ethanolamine (23.4–67%), phosphatidyl serine (9.3–17.6%), and phosphatidyl inositol (1.9–11.9%). Diphosphatidyl glycerol occurred in considerable quantity only inH. lanuginosa andM. pulchella var.sulfurea. Phosphatidic acid, detected as a minor component only inM. pulchella var.sulfurea andA. ramosa, does not appear to be a characteristic phosphatide of thermophilic fungi as suggested earlier. The 16∶0, 16∶1, 18∶0, 18∶1, and 18∶2 acids were the main fatty acid components. In addition,A. ramosa contained 18∶3 acid. Total lipids contained an average of 0.93 double bonds per mole of fatty acids, and neutral lipids tend to be more unsaturated than phospholipids.  相似文献   

10.
Ozonolysis studies of the monoenes of the fatty chain types in lipids of steer meibomian gland excreta (meibum) have confirmed earlier structural assignments based on gas liquid chromatography (GLC) retention data and have assisted in assigning complete structures to a group of recently identified ω-hydroxy fatty acids. The ω-hydroxy acids include straight-chain monoenoic acids (85%), saturated anteiso and iso acids (13%), monoenoic acids of the latter group (1%) and, finally, saturates of the normal monoenoic acids (1%). All the fatty chains of meibum can be biosynthesized by a unified process of chain buildup to primary chain lengths of 12∶0–20∶0 for the straight evens, with 16∶0 predominating, 13∶0–21∶0 for the straight odds with 17∶0 predominating, i16∶0 to i28∶0 for the iso and ai17∶0 to ai29∶0 for the anteiso chain types; then Δ9 desaturation of each of these chain types; and finally chain elongation of 1–10 C2 units. Some chain degradation may also occur. The meibum lipid components involved are unsubstituted fatty acids, α-OH fatty acids, ω-OH fatty acids, fatty alcohols and some other lipid components incompletely characterized. The carbon skeletons are straight even, straight odd, iso and anteiso except that the α-OH fatty acids are only straight even and straight odd and these chains are not elongated. All fatty chains are almost entirely saturated and monoenoic, the polyenes occurring in only trace amounts. Biosynthesis of the fatty chains of human meibum evidently occurs similarly, except that considerably more 18∶0 than 16∶0 fatty acids are built up by the fatty acid synthetase, before desaturation and extension.  相似文献   

11.
Lipids extracted fromSaccharomyces fragilis, grown in whey and deproteinized whey, were similar in amount and fatty acid composition. On a dry weight basis, the yeasts contained 3.0% total lipid and 0.5% saponifiable lipid. The fatty acids identified by gas chromatography-mass spectrometry were 2.5% C14∶0, 19.2% C16∶0, 11.9% C16∶1, 1.28% C16∶2, 3.4% C18∶0, 27.0% C18∶1, 25.1% C18∶2, and 9.6% C18∶3 with less than 1% of the following fatty acids present: C10∶0, C12∶0, C14∶1, C15∶0, and C17∶0.  相似文献   

12.
Shiv K. Berry 《Lipids》1980,15(6):452-455
The aril and seeds of the fruit Durian (Durio zibethinus, Murr.) were examined for their protein content and fatty acid composition by gas liquid chromatography (GLC). The values (area percentage) for fatty acids as methyl esters were: aril=14∶0 (0.91%); 16∶0 (34.13%); 16∶1 (7.10%); 18∶0 (1.21%); 18∶1 (42.14%); 18∶2 (7.85%) and 18∶3 plus 20∶0 (5.69%), Seeds=14∶0 (0.12%); 16∶0 (12.20%); 16∶1 (1.15%); 18∶0 (1.42%); 18∶1 (8.42%); 18∶2 (6.50%); dihydrosterculic acid (2.52%); 18∶3 plus 20∶0 (11.30%); malvalic acid (15.72%); sterculic acid (38.53%) and 22∶0 (1.21%). The germ oil contained the highest amount of sterculic acid. The cooking temperatures employed reduced the malvalic and sterculic acid contents in seeds only by ca. 22% and 19%, respectively.  相似文献   

13.
The fatty acid composition of individual phospholipids in subcellular fractions of sheep platelets and the asymmetrical distribution of phosphatidylethanolamine (PE) fatty acyl chains across the plasma membrane were examined. The main fatty acids of total lipid extracts were oleic (18∶1; 32–41%), linoleic (18∶2, 10–17%), stearic (18∶0; 13–15%), palmitic (16∶0; 11–15%) and arachidonic (20∶4; 8–12%) acids, with a saturated/unsaturated ratio of about 0.4. Each phospholipid class had a distinct fatty acid pattern. Sphingomyelin (SM) showed the highest degree of saturation (50%), with large proportions of behenic (22∶0), 18∶0 and 16∶0 acids. The main fatty acid in PE, phosphatidylserine (PS) and phosphatidylcholine (PC) was 18∶1n−9. Our findings suggest that fatty acids are asymmetrically distributed between thecholineversus the non-choline phospholipids, and also between plasma membranes and intracellular membranes. The transbilayer distribution of PE fatty acids in plasma membranes from non-stimulated sheep platelets was investigated using trinitrobenzenesulfonic acid (TNBS). A significant degree of asymmetry was found, which is a new observation in a non-polar cell. The PE molecules from the inner monolayer contained higher amounts of 18∶2 and significantly less 18∶1 and 20∶5 than those found in the outer monolayer, although no major differences were detected in the transbilayer distribution of total unsaturatedversus saturated PE acyl chains.  相似文献   

14.
Three groups of diesters have been isolated and identified in the lipids of steer meibomian glands. The first group, designated as α Type I, with the abbreviated formula FA-αOHFA-FA1c, consisted of α-hydroxy fatty acids esterified to fatty acids and fatty alcohols in the approximate molar ratio 1∶1∶1. The second group, designated as ω Type I-St, with the abbreviated formula FA-ωOHF A-St, consisted of ω-hydroxy fatty acids esterified to fatty acids and sterols in the approximate molar ratio 1∶1∶1. The third group, designated as α,ω Type II, with the abbreviated formula FA-α,ωdiol-FA, consisted of α,ω-diols esterified to 2 moles of fatty acids. The sum of the different diesters comprised about 9% of total steer meibomian lipids. Capillary GLC of the fatty acids of αType I diesters showed the fatty acids to be a family with a two-cluster profile, one at C12 to C20 and the other at C21 to C31, with anteiso chains predominating. Fatty acids from ωType I-St and α,ωType II diesters gave mainly a one-cluster profile in the short long chain, C23 to C30, with anteiso chains predominating, while the α-hydroxy fatty acids were short chain C13 to C18 acids with C16 predominating. The sterols in diesters ωType I-St were cholesterol (∼60%), Δ7 cholestenol (∼35%) and an unidentified compound (∼5%) with a GLC retention time slightly longer than Δ7 cholestenol on SE-30 phase. The ω-hydroxy fatty acids and α,ω-diols both were of exceedingly long chain lengths, C29−C38, and showed similar GLC profiles. Two types of triesters comprising approximately 1% of total steer meibomian lipids have been isolated but incompletely characterized. In terms of molar ratios, one group of triesters gave fatty acids:ω-hydroxy fatty acids:α-hydroxy fatty acids:sterols + fatty alcohols as approximately 1∶1∶1∶1. The other contained fatty acids, α-hydroxy fatty acids and α,ω-diols in what appears to be a complex mixture of several triesters. Diesters ωType I and α,ωType II also were found in human meibum. Hitherto these two diesters have not been found in any animal tissue.  相似文献   

15.
A combined capillary gas liquid chromatography (GLC) and infrared spectrophotometry (IR) method is described for the determination ofcis andtrans-octadecenoic acids in margarines made from partially hydrogenated vegetable oils. The totaltrans-unsaturation of margarine fatty acid methyl esters determined by IR, with methyl elaidate as the external standard, was correlated to the capillary GLC weight percentages of the componenttrans fatty acid methyl esters by the mathematical formula: IRtrans=%18∶1t+0.84×%18.2t+1.74×%18∶2tt+ 0.84×%18∶3t where 0.84, 1.74 and 0.84 are the correction factors which relate the GLC weight percentages to the IRtrans-equivalents for mono-trans-octadecadienoic (18∶2t),trans, trans-octadecadienoic (18∶2tt) and mono-trans-octadecatrienoic (18∶3t) acids, respectively. This formula forms the basis for the determination of totaltrans-andcis-octadecenoic acids in partially hydrogenated vegetable oils. From the weight percentages of 18∶2t, 18∶2tt and 18∶3t determined by capillary GLC on a cyanosilicone liquid phase and the totaltrans-unsaturation by IR, the percentage of the totaltrans-octadecenoic acids (18∶1t) is calculated using the formula. The difference between the total octadecenoic acids (18∶1), determined by capillary GLC, and the 18∶1t gives the totalcis-octadecenoic acids. Presented in part at the 81st Annual Meeting of the American Oil Chemists' Society, Baltimore, Maryland, April 22–25, 1990.  相似文献   

16.
The fatty chain compositions of 1-O-alk-1′-enyl-2-acyl, 1-0-alkyl-2-acyl, and 1,2-diacyl glycerophospholipids of the Japanese oysterCrassostrea gigas (Thunberg) were investigated. Major fatty chains in thesn-1 position of 1-alk-1′-enyl-2-acyl ethanolamine phospholipids (EPL) were 18∶0 (64.7%) and 20∶1 (11.1%). Majorsn-1 chains of alkenylacyl choline phospholipids (CPL) were 18∶0 (63.3%) and 16∶0 (22.2%). In the case of 1-alkyl-2-acyl EPL, the predominant fatty chains in thesn-1 position were 18∶0 (51.5%), 16∶0 (16.0%) and 20∶1 (12.5%); in the case of 1-alkyl-2-acyl CPL, the majorsn-1 chains were 16∶0 (44.0%) and 14∶0 (23.4%). Saturated fatty chains were predominant in both EPL and CPL. Prominent fatty acids in thesn-2 position of the alkenylacyl EPL were 22∶6n−3 (29.0%), 20∶5n−3 (19.0%) and 22∶2 NMID (non-methylene interrupted dienes, 16.6%) contributing to about 65% of the total fatty acids, while alkenylacyl CPL was rich in the saturated acids 16∶0 (32.0%) and 18∶0 (9.2%). In the alkylacyl EPL, 16∶0, 18∶1n−9, 18∶0 and 16∶1n−7 were prominentsn-2 fatty acids and accounted for 30.6%, 10.0%, 9.8%, and 8.3%, respectively. Polyunsaturated fatty acids were detected, but were present at extremely low percentages. Majorsn-2 fatty acids in alkylacyl CPL were 16∶0 (25.4%), 22∶6n−3 (16.0%) and 20∶5n−3 (8.4%). The major fatty acids of diacyl EPL were 20∶5n−3 (22.3%), 16∶0 (17.9%), and 18∶0 (16.1%), and those of diacyl CPL were 16∶0 (30.4%), 20∶5n−3 (17.6%) and 18∶1n−7 (7.4%).  相似文献   

17.
The lipid composition of the pineal organ from the rainbow trout (Oncorhynchus mykiss) was determined to establish whether the involvement of this organ in the control of circadian rhythms is reflected by specific adaptations of lipid composition. Lipid comprised 4.9% of the tissue wet weight and triacylglycerols were the major lipid class present (47% of total lipid). Phosphatidylcholine (PC) was the principal polar lipid, and smaller proportions of other phospholipids and cholesterol were also present. Plasmalogens contributed 11% of the ethanolamine glycerophospholipids (EGP). No cerebrosides were detected. The fatty acid composition of triacylglycerols was generally similar to that of total lipids in which saturated, monounsaturated and polyunsaturated fatty acids (PUFA) were present in almost equal proportions. Each of the polar lipid classes had a specific fatty acid composition. With the exception of phosphatidylinositol (PI), in which 20∶4n−6 comprised 27.4% of the total fatty acids, 22∶6n−3 was the principal PUFA in all lipid classes. The proportion of 20∶5n−3 never exceeded 6.0% of the fatty acids in any lipid class. The predominant molecular species of PC were 16∶0/22∶6n−3 and 16∶0/18∶1, which accounted for 33.2 and 28.5%, respectively, of the total molecular species of this phospholipid. Phosphatidylethanolamine (PE) contained the highest level of di-22∶6n−3 (13.0%) of any phospholipid. There was also 4.9% of this molecular species in phosphatidylserine (PS) and 4.1% in PC. In PE, the species 16∶0/22∶6, 18∶1/22∶6 and 18∶0/22∶6 totalled 45.1%, while in PS 18∶0/22∶6 accounted for 43.9% of the total molecular species. The most abundant molecular species of PI was 18∶0/20∶4n−6 (37.8%). The lipid composition of the pineal organ of trout, and particularly the molecular species composition of PI, is more similar to the composition of the retina than that of the brain. Molecular species are abbreviated as follows: e.g., 16∶0/22∶6 PC is 1-palmitoyl-2-docosahexaenoyl-sn-glycero-3-phosphocholine.  相似文献   

18.
Neutral lipids and phospholipids in the body wall, lemnisci and pseudocoel and neutral lipids of fluid found in the “tube” system of the lemnisci and the lacunar system of the body wall ofMacracanthorhynchus hirudinaceus (Acanthocephala) were determined by the technique of thin layer chromtography and gas chromatography (GC). Sixteen different fatty acids from nonpolar lipids were identified as follows: 8∶0, 10∶0, 11∶0, 12∶0, 13∶0, 14∶0, 14∶1, 16∶0, 18∶0, 18∶1, 18∶2 and/or 20∶0, 18∶3 and/or 20∶1, 20∶3, 22∶1, 24∶1 and 22∶6. In addition, there were three unidentified GC peaks corresponding to chain lengths greater than 20 carbons. Sixteen different fatty acids from phospholipids were identified in each of the three fractions analyzed. They were as follows: 10∶0, 11∶0, 12∶0, 13∶0, 14∶0, 14∶1, 16∶0, 16∶1, 18∶0, 18∶1, 18∶2 and/or 20∶0, 20∶2, 20∶3, 22∶1, 24∶1, and 22∶6. Four unidentified peaks were also observed. There was a significant difference in the percentage of lipid as well as the concentration of particular fatty acids when each fraction was compared. There was also an abundant supply of sterols and glycerides in each fraction.  相似文献   

19.
The seeds ofDiplocyclos palmatus L. (Cucurbitaceae) contained 23% oil and 15% protein. The UV, IR,1H-NMR and13C-NMR spectrometry of the oil, and oxidation, reduction and gas liquid chromatography (GLC) of the methyl ester of conjugated fatty acid isolated by preparative thin layer chromatography (TLC) showed the presence of punicic (octadeca-cis-9,trans-11,cis-13-trienoic) acid. The fatty acid composition (wt %), as determined by GLC, is: punicic, 38.2; 18∶2, 43.9; 16∶0, 8.1; 18∶0, 4.9 and 18∶1, 4.9.  相似文献   

20.
B. F. Szuhaj  R. L. McCarl 《Lipids》1973,8(5):241-245
Fatty acid composition of neutral and polar lipid fractions from rat hearts was determined in rats of different ages as their diet source changed. Piebald rats were weaned at 21 days and were fed standard lab chow. Lipids from rat hearts, mothers milk and lab chow were purified on a Sephadex G-25 fine column and separated into neutral and polar lipid fractions by silicic acid column chromatography. These lipid fractions were then hydrolyzed and methylated with BF3 in methanol, prior to gas liquid chromatographic separation on a 1/8 in. × 10 ft aluminum column of 15% EGS on 80–100 mesh acid-washed Chromosorb W. Three major fatty acids in the neutral lipid fraction comprised 72% of total neutral lipid fatty acids from young hearts. At sexual maturity (at least 74 days old) C18∶1 was the major fatty acid, followed by C16∶0 and C18∶0. The same three fatty acids comprised 83% of total polar lipid fatty acids, but C18∶0 was the major fatty acid, followed by C16∶0 and C18∶1. The fatty acid composition of dietary lipids influenced the total neutral lipid fatty acid composition of the rat heart, but had little influence on the fatty acid composition of the polar lipid fraction. Presented in part at the AOCS Meeting, New Orleans, April 1970.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号