首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Water-atomized cast iron powder of Fe-2.17 at.%C-9.93at.%Si-3.75at.%Al were deposited onto an aluminum alloy substrate by atmospheric direct current plasma spraying to improve its tribological properties. Preannealing of the cast iron powder allows the precipitation of considerable amounts of graphite structure in the powder. However, significant reduction in graphitized carbon in cast iron coatings is inevitable after plasma spraying in air atmosphere due to the in-flight burning and dissolution into molten iron droplets. Hexagonal boron nitride (h-BN) powders, which have excellent lubricating properties like graphite, were incorporated into the cast iron powder as a solid lubricant by the sintering process (1300°C) to obtain protective coatings with a low friction coefficient. The performance of each coating was evaluated using a ring-on-disk-type wear tester under a paraffin-based oil condition in an air atmosphere. A conventional cast iron liner, which had a flaky graphite embedded in the pearlitic matrix, was also tested under similar conditions for comparison. Sections of worn surfaces and debris were characterized, and the wear behavior of plasma-sprayed coatings was discussed. The original version of this paper was published in the CD ROM Thermal Spray Connects: Explore Its Surfacing Potential, International Thermal Spray Conference, sponsored by DVS, ASM International, and HW International Institute of Welding, Basel, Switzerland, May 2–4, 2005, DVS-Verlag GmbH, Düsseldorf, Germany.  相似文献   

2.
Retaining nonmelted nanoparticles of zirconia in nanostructured coatings has been a challenge in the past. Recently an air plasma spray process was developed to produce coatings that retain up to 30–35% by volume nonmelted particles, resulting in a unique structure. The creep/sintering behavior of such thermal barrier coatings deposited from nanostructured feedstock has been measured and compared with deposits produced from hot oven spherical particles (HOSP). Both feedstocks contain 6–8 wt.% Y2O3 as a stabilizer. Flexure and compression creep testing were conducted under several different loads and temperatures to obtain creep exponents and parameters. This article was originally published inBuilding on 100 Years of Success, Proceedings of the 2006 International Thermal Spray Conference (Seattle, WA), May 15–18, 2006, B.R. Marple, M.M. Hyland, Y.-Ch. Lau, R.S. Lima, and J. Voyer, Ed., ASM International, Materials Park, OH, 2006.  相似文献   

3.
In previous studies, it has been demonstrated that nanostructured Al2O3-13 wt.%TiO2 coatings deposited via air plasma spray (APS) exhibit higher wear resistance when compared to that of conventional coatings. This study aimed to verify if high-velocity oxy-fuel (HVOF)-sprayed Al2O3-13 wt.%TiO2 coatings produced using hybrid (nano + submicron) powders could improve even further the already recognized good wear properties of the APS nanostructured coatings. According to the abrasion test results (ASTM G 64), there was an improvement in wear performance by a factor of 8 for the HVOF-sprayed hybrid coating as compared to the best performing APS conventional coating. When comparing both hybrid and conventional HVOF-sprayed coatings, there was an improvement in wear performance by a factor of 4 when using the hybrid material. The results show a significant antiwear improvement provided by the hybrid material. Scanning electron microscopy (SEM) at low/high magnifications showed the distinctive microstructure of the HVOF-sprayed hybrid coating, which helps to explain its excellent wear performance. This article is an invited paper selected from presentations at the 2007 International Thermal Spray Conference and has been expanded from the original presentation. It is simultaneously published in Global Coating Solutions, Proceedings of the 2007 International Thermal Spray Conference, Beijing, China, May 14-16, 2007, Basil R. Marple, Margaret M. Hyland, Yuk-Chiu Lau, Chang-Jiu Li, Rogerio S. Lima, and Ghislain Montavon, Ed., ASM International, Materials Park, OH, 2007.  相似文献   

4.
Synthesis and oxidation behavior of nanocrystalline MCrAlY bond coatings   总被引:1,自引:1,他引:1  
Thermal barrier coating systems protect turbine blades against high-temperature corrosion and oxidation. They consist of a metal bond coat (MCrAlY, M = Ni, Co) and a ceramic top layer (ZrO2/Y2O3). In this work, the oxidation behavior of conventional and nanostructured high-velocity oxyfuel (HVOF) NiCrAlY coatings has been compared. Commercially available NiCrAlY powder was mechanically cryomilled and HVOF sprayed on a nickel alloy foil to form a nanocrystalline coating. Freestanding bodies of conventional and nanostructured HVOF NiCrAlY coatings were oxidized at 1000 °C for different time periods to form the thermally grown oxide layer. The experiments show an improvement in oxidation resistance in the nanostructured coating when compared with that of the conventional one. The observed behavior is a result of the formation of a continuous Al2O3 layer on the surface of the nanostructured HVOF NiCrAlY coating. This layer protects the coating from further oxidation and avoids the formation of mixed oxide protrusions present in the conventional coating. The original version of this article was published as part of the ASM Proceedings, Thermal Spray 2003: Advancing the Science and Applying the Technology, International Thermal Spray Conference (Orlando, FL), May 5–8 2003, Basil R. Marple and Christian Moreau, Ed., ASM International, 2003.  相似文献   

5.
Nondestructive techniques for evaluating and characterizing coatings were extensively demanded by the thermal spray community; nonetheless, few results have been produced in practice due to difficulties in analyzing the complex structure of thermal spray coatings. Of particular interest is knowledge of the elastic modulus values and Poisson’s ratios, which are very important when seeking to understand and/or model the mechanical behavior or to develop life prediction models of thermal spray coatings used in various applications (e.g., wear, fatigue, and high temperatures). In the current study, two techniques, laser-ultrasonics and Knoop indentation, were used to determine the elastic modulus of thermal spray coatings. Laser-ultrasonics is a noncontact and nondestructive evaluation method that uses lasers to generate and detect ultrasound. Ultrasonic velocities in a material are directly related to its elastic modulus value. The Knoop indentation technique, which has been widely used as a method for determining elastic modulus values, was used to compare and validate the measurements of the laser-ultrasonic technique. The determination of elastic modulus values via the Knoop indentation technique is based on the measurement of elastic recovery of the dimensions of the Knoop indentation impression. The approach used in the current study was to focus on evaluating the elastic modulus of very uniform, dense, and near-isotropic titania and WC-Co thermal spray coatings using these two techniques. Four different coatings were evaluated: two titania coatings produced by air plasma spray (APS) and high-velocity oxyfuel (HVOF) and two types of WC-Co coatings, conventional and multimodal (nanostructured and microsized particles), deposited by HVOF. The original version of this article was published as part of the ASM Proceedings, Thermal Spray 2003: Advancing the Science and Applying the Technology, International Thermal Spray Conference (Orlando, FL), 5–8 May, 2003, Basil R. Marple and Christian Moreau, Eds., ASM International, 2003.  相似文献   

6.
In this study, nanostructured ZrO2-3 mol% Y2O3 coatings were deposited by air plasma spray using reconstituted feedstock. The coating structures were characterized by x-ray diffractometer, micro-Raman spectrometer, field emission scanning electron microscope, and transmission electron microscope. It is revealed that the as-sprayed coating is mainly composed of columnar grains with diameters <100 nm and demonstrates the better toughness, higher microhardness, and lower porosity. It consists only of nontransformable tetragonal ZrO2 phase. The tribological performance of the coating was examined with a ball-on-disk apparatus under dry sliding conditions. The results show that the friction coefficient of as-sprayed coating was approximately one-fifth of the conventional zirconia coating and wear rate was lower one order of magnitude than the conventional zirconia coating. The dominant wear mechanism is abrasive wear. The improved wear resistance can be attributed to the increased mechanical properties of as-sprayed coating.  相似文献   

7.
This work describes recent progress in cold-spray processing of conventional and nanocrystalline 2618 (Al−Cu−Mg−Fe−Ni) aluminum alloy containing scandium (Sc). As-atomized and cryomilled 2618+Sc aluminum powder were sprayed onto aluminum substrates. The mechanical behavior of the powders and the coatings were studied using micro-and nanoindentation techniques, and the microstructure was analyzed using scanning and transmission electron microscopy (SEM and TEM). The influence of powder microstructure, morphology, and behavior during deposition on the coating properties was analyzed. This work shows that Al−Cu−Mg−Fe−Ni−Sc coatings with a nanocrystalline grain structure can be successfully produced by the cold-spray process. Inspection of the scientific literature suggests that this is the first time a hardness value of 181 HV has been reported for this specific alloy. The original version of this paper was published in the CD ROM Thermal Spray Connects: Explore Its Surfacing Potential, International Thermal Spray Conference, sponsored by DVS, ASM International, and IIW International Institute of Welding, Basel, Switzerland, May 2–4, 2005, DVS-Verlag GmbH, Düsseldorf, Germany.  相似文献   

8.
Nanocrystalline Al−Mg coatings were produced using the cold gas dynamic-spraying technique. Unsieved Al−Mg powder of average nanocrystalline grain size in the range of 10 to 30 nm and with a particle size distribution from 10 to >100 μm was used as the feedstock powder. The resulting coatings were evaluated using scanning electron microscopy (SEM), transmission electron microscopy, as well as microhardness and nanoindentation measurements. Coating observations suggest that the wide particle size distribution of the feedstock powder has a detrimental effect on the coating quality but that it can be successfully mitigated by optimizing the spraying parameters. Nanohardness values close to 3.6 GPa were observed in both the feedstock powder and coatings, suggesting the absence of cold-working hardening effects during the process. The effects of the substrate surface roughness and thickness on coating quality were investigated. The deposited mass measurements performed on the coatings showed that the effect of using different grit sizes for the substrate preparation is limited to small changes in the deposition efficiency of only the first few layers of deposited material. The SEM observation showed that the substrate surface roughness has no significant effect on the macrostructures and microstructures of the coating. The ability to use the cold gas dynamic spraying process to produce coatings on thin parts without noticeable substrate damage and with the same quality as coatings produced on thicker substrates was demonstrated in this work. The original version of this paper was published in the CD ROM Thermal Spray Connects: Explore Its Surfacing Potential, International Thermal Spray Conference, sponsored by DVS, ASM International, and IIW International Institute of Welding, Basel, Switzerland, May 2–4, 2005, DVS-Verlag GmbH, Düsseldorf, Germany.  相似文献   

9.
Polymer and polymer/ceramic composite coatings were produced by ball-milling 60 μm Nylon-11 together with nominal 10 vol.% of nano and multiscale ceramic reinforcements and by HVOF spraying these composite feedstocks onto steel substrates to produce semicrystalline micron and nanoscale reinforced polymer matrix composites. Room temperature dry sliding wear performance of pure Nylon-11, Nylon-11 reinforced with 7 nm silica, and multiscale Nylon-11/silica composite coatings incorporating 7-40 nm and 10 μm ceramic particles were characterized using a pin-on-disk tribometer. Coefficient of friction and wear rate were determined as a function of applied load and coating composition. Surface profilometry and scanning electron microscopy were used to characterize and analyze the coatings and wear scars. The pure Nylon-11 coating experienced less wear than the composites due to the occurrence of two additional wear mechanisms: abrasive and fatigue wear. This article is an invited paper selected from presentations at the 2007 International Thermal Spray Conference and has been expanded from the original presentation. It is simultaneously published in Global Coating Solutions, Proceedings of the 2007 International Thermal Spray Conference, Beijing, China, May 14-16, 2007, Basil R. Marple, Margaret M. Hyland, Yuk-Chiu Lau, Chang-Jiu Li, Rogerio S. Lima, and Ghislain Montavon, Ed., ASM International, Materials Park, OH, 2007.  相似文献   

10.
This article reports on a series of experiments with various high-velocity oxygen fuel spray systems (Jet Kote, Top Gun, Diamond Jet (DJ) Standard, DJ 2600 and 2700, JP-5000, Top Gun-K) using different WC-Co and WC-Co-Cr powders. The microstructure and phase composition of powders and coatings were analyzed by optical and scanning electron microscopy and x-ray diffraction. Carbon and oxygen content of the coatings were determined to study the decarburization and oxidation of the material during the spray process. Coatings were also characterized by their hardness, bond strength, abrasive wear, and corrosion resistance. The results demonstrate that the powders exhibit various degrees of phase transformation during the spray process depending on type of powder, spray system, and spray parameters. Within a relatively wide range, the extent of phase transformation has only little effect on coating properties. Therefore, coatings of high hardness and wear resistance can be produced with all HVOF spray systems when the proper spray powder and process parameters are chosen. This paper originally appeared in Thermal Spray: Meeting the Challenges of the 21st Century; Proceedings of the 15th International Thermal Spray Conference, C. Coddet, Ed., ASM International, Materials Park, OH, 1998. This proceedings paper has been extensively reviewed according to the editorial policy of the Journal of Thermal Spray Technology.  相似文献   

11.
爆炸喷涂WC-12%Co涂层的滑动磨损性能   总被引:5,自引:0,他引:5  
采用爆炸喷涂技术制备纳米和普通WC-12%Co涂层,用往复试验机对涂层的干滑动磨损性能进行了研究,分析了涂层磨损前后的形貌、结构及成分变化.结果表明:相同的喷涂条件下,WC-12%Co纳米涂层比普通涂层结构均匀、致密,但碳化物分解严重.尽管纳米涂层与普通涂层具有相近的硬度,但普通涂层的耐磨性优于纳米涂层,尤其是在重载条件下.普通涂层的磨损机制为微切削;纳米涂层在轻载(10 N)下,以塑性变形为主要磨损机制,随载荷增加至30 N,纳米WC粒子不能起到阻抗陶瓷球对磨副的磨削作用,而是随粘结相一起被去除,同时由于纳米涂层脱碳导致的层间结合薄弱,在滑动磨损中易发生成片剥落,耐磨性大幅下降.  相似文献   

12.
Hybrid plasma spraying combined with yttrium-aluminum-garnet laser irradiation was studied to obtain optimum zirconia coatings for thermal barrier use. Zirconia coatings of approximately 150 μm thickness were formed on NiCrAlY bond coated steel substrates both by means of conventional plasma spraying and hybrid plasma spraying under a variety of conditions. Post-laser irradiation was also conducted on the plasma as-sprayed coating. The microstructure of each coating was studied and, for some representative coatings, thermal barrier properties were evaluated by hot erosion and hot oxidation tests. With hybrid spraying, performed under optimum conditions, it was found that a microstructure with appropriate partial densification and without connected porosity was formed and that cracks, which are generally produced in the post-laser irradiation treatment, were completely inhibited. In addition, hybrid spraying formed a smooth coating surface. These microstructural changes resulted in improved coating properties with regard to hardness, high temperature erosion resistance, and oxidation resistance. This paper originally appeared in Thermal Spray: Meeting the Challenges of the 21st Century; Proceedings of the 15th International Thermal Spray Conference, C. Coddet, Ed., ASM International, Materials Park, OH, 1998. This proceedings paper has been extensively reviewed according to the editorial policy of the Journal of Thermal Spray Technology.  相似文献   

13.
Nanostructured zirconia thermal barrier coatings (TBCs) have been prepared by atmospheric plasma spraying using the reconstituted nanosized yttria partially stabilized zirconia powder. Field emission scanning electron microscope was applied to examine the microstructure of the resulting TBCs. The results showed that the TBCs exhibited a unique, complex structure including nonmelted or partially melted nanosized particles and columnar grains. A CO2 continuous wave laser beam has been applied to laser glaze the nanostructured zirconia TBCs. The effect of laser energy density on the microstructure and thermal shock resistance of the as-glazed coatings has been systematically investigated. SEM observation indicated that the microstructure of the as-glazed coatings was very different from the microstructure of the as-sprayed nanostructured TBCs. It changed from single columnar grain to a combination of columnar grains in the fracture surface and equiaxed grains on the surface with increasing laser energy density. Thermal shock resistance tests have showed that laser glazing can double the lifetime of TBCs. The failure of the as-glazed coatings was mainly due to the thermal stress caused by the thermal expansion coefficient mismatch between the ceramic coat and metallic substrate.  相似文献   

14.
The nanostructured TiO2 photocatalytic coatings were synthesized through flame spraying with liquid feedstock under different conditions. The nanostructured TiO2 deposit of substantial anatase phase was annealed at different temperatures. X-ray diffraction analysis showed that significant transformation from anatase to rutile occurred at a temperature above 600 °C. However, thermal analysis suggested that the phase transformation from anatase to rutile started at a temperature from 400 to 500°C. It was found that the grain size of rutile phase was larger than that of anatase. The deposits annealed at temperatures lower than 450°C were photocatalytically active. However, the deposit annealed at 500°C, which contained 95% anatase crystalline, became photocatalytically inactive. Based on the experimental findings, a model is proposed to explain the phase transformation of the nano-TiO2 particles and the phase formation in flame-spraying of nanostructured TiO2 deposit with liquid feedstock. The original version of this paper was published as part of the DVS Proceedings: “Thermal Spray Solutions: Advances in Technology and Application,” International Thermal Spray Conference, Osaka, Japan, 10–12 May 2004, CD-Rom, DVS-Verlag GmbH, Düsseldorf, Germany.  相似文献   

15.
High-velocity oxyfuel (HVOF) spraying of WC-12Co was performed using a feedstock in which the WC phase was either principally in the micron size range (conventional) or was engineered to contain a significant fraction of nanosized grains (multimodal). Three different HVOF systems and a wide range of spray parameter settings were used to study the effect of in-flight particle characteristics on coating properties. A process window with respect to particle temperature was identified for producing coatings with the highest resistance to dry abrasion. Although the use of a feedstock containing a nanosized WC phase produced harder coatings, there was little difference in the abrasion resistance of the best-performing conventional and multimodal coatings. However, there is a potential benefit in using the multimodal feedstock due to higher deposition efficiencies and a larger processing window. The original version of this article was published as part of the ASM Proceedings, Thermal Spray 2003: Advancing the Science and Applying the Technology, International Thermal Spray Conference (Orlando, FL), May 5–8, 2003, Basil R. Marple and Christian Moreau, Ed., ASM International, 2003.  相似文献   

16.
Recently, there has been considerable interest in producing cermet coatings with nanoscale carbide grains in the size range 50 to 500 nm. In this article, the production of nanoscale TiC grains in a Ni-based alloy matrix by reactive high-velocity oxyfuel (HVOF) spraying of metastable Ni-Ti-C powder is reported. Mechanical alloying of a Ni(Cr) prealloyed powder and Ti and C elemental powders was performed in a planar-type ball mill, and materials were characterized in detail using x-ray diffraction (XRD) and scanning electron micros-copy (SEM). Phase changes were correlated with milling time and other processing conditions. Results show that, by the selection of appropriate conditions, a metastable Ni-Ti-C powder could be obtained with the nominal composition 50wt.%Ni-40wt.%Ti-10wt.%C. Following sieving and classification, powder was produced with a particle size range of −38 to 8 μm, which is suitable for HVOF spraying. Coatings, approximately 250 μm thick, were deposited by HVOF spraying onto mild steel substrates, and the microstructures formed were investigated. XRD showed that a self-propagating high-temperature synthesis (SHS) reaction had occurred in the powder particles during spraying and that the principal phases present in the coating were TiC and a Ni-rich solid solution; small quantities of NiTi, TiO2, and NiTiO3 were also present. SEM revealed that the coatings had a characteristic, splatlike morphology and that TiC formed as a nanoscale dispersion, with a size range of ∼50 to 200 nm, within solidified splats. The microstructures of these reactively sprayed Ni-TiC coatings are briefly compared with those observed in HVOF-sprayed coatings deposited using prereacted SHS powder. The original version of this paper was published as part of the ASM Proceedings, Thermal Spray 2003: Advancing the Science and Applying the Technology, International Thermal Spray Conference (Orlando, FL), May 5–8, 2003, Basil R. Marple and Christian Moreau, Ed., ASM International, 2003.  相似文献   

17.
Al2O3-13%TiO2 coatings were deposited on stainless steel substrates from conventional and nanostructured powders using atmospheric plasma spraying (APS). A complete characterization of the feedstock confirmed its nanostructured nature. Coating microstructures and phase compositions were characterized using SEM, TEM, and XRD techniques. The microstructure comprised two clearly differentiated regions. One region, completely fused, consisted mainly of nanometer-sized grains of γ-Al2O3 with dissolved Ti+4. The other region, partly fused, retained the microstructure of the starting powder and was principally made up of submicrometer-sized grains of α-Al2O3, as confirmed by TEM. Coating microhardness as well as tribological behavior were determined. Vickers microhardness values of conventional coatings were in average slightly lower than the values for nanostructured coating. The wear resistance of conventional coatings was shown to be lower than that of nanostructured coatings as a consequence of Ti segregation. A correlation between the final properties, the coating microstructure, and the feedstock characteristics is given.  相似文献   

18.
Nanostructured titania (TiO2) coatings were produced by high-velocity oxyfuel (HVOF) spraying. They were engineered as a possible candidate to replace hydroxyapatite (HA) coatings produced by thermal spray on implants. The HVOF sprayed nanostructured titania coatings exhibited mechanical properties, such as hardness and bond strength, much superior to those of HA thermal spray coatings. In addition to these characteristics, the surface of the nanostructured coatings exhibited regions with nanotextured features originating from the semimolten nanostructured feedstock particles. It is hypothesized that these regions may enhance osteoblast adhesion on the coating by creating a better interaction with adhesion proteins, such as fibronectin, which exhibit dimensions in the order of nanometers. Preliminary osteoblast cell culture demonstrated that this type of HVOF sprayed nanostructured titania coating supported osteoblast cell growth and did not negatively affect cell viability. This article was originally published inBuilding on 100 Years of Success, Proceedings of the 2006 International Thermal Spray Conference (Seattle, WA), May 15–18, 2006, B.R. Marple, M.M. Hyland, Y.-Ch. Lau, R.S. Lima, and J. Voyer, Ed., ASM International, Materials Park, OH, 2006.  相似文献   

19.
Nanostructured thermal barrier coatings (TBCs) were deposited by plasma spraying using agglomerated nanostructured YSZ powder on Inconel 738 substrate with cold-sprayed nanostructured NiCrAlY powder as bond coat. The isothermal oxidation and thermal cycling tests were applied to examine failure modes of plasma-sprayed nanostructured TBCs. For comparison, the TBC consisting of conventional microstructure YSZ and conventional NiCrAlY bond coat was also deposited and subjected to the thermal shock test. The results showed that nanostructured YSZ coating contained two kinds of microstructures; nanosized zirconia particles embedded in the matrix and microcolumnar grain structures of zirconia similar to those of conventional YSZ. Although, after thermal cyclic test, a continuous, uniform thermally grown oxide (TGO) was formed, cracks were observed at the interface between TGO/BC or TGO/YSZ after thermal cyclic test. However, the failure of nanostructured and conventional TBCs mainly occurred through spalling of YSZ. Compared with conventional TBCs, nanostructured TBCs exhibited better thermal shock resistance.  相似文献   

20.
Aside from its importance as a design parameter for thermal barrier coatings, measuring thermal conductivity of thermal sprayed coatings itself provides a unique method to critically characterize the nature, quantity, and anisotropy of the defect morphologies in these splat-based coatings. In this paper, the authors present a systematic assessment of thermal conductivity of wide range using the flash diffusivity technique. For the case of plasma sprayed yttria-stabilized zirconia (YSZ), coatings obtained from wide-ranging initial powder morphologies as well as those fabricated under different particle states were characterized. Both in-plane and through-thickness properties were obtained. Other material systems that were considered include: metallic alloys and semiconductors of interests. Issues such as reproducibility and reliability in measurements were also considered and assessed. Finally, work in collaboration with the Oak Ridge National Laboratory (ORNL) for alternate approaches to characterization of thermal conductivity as well as high-temperature measurements was performed. This article was originally published inBuilding on 100 Years of Success, Proceedings of the 2006 International Thermal Spray Conference (Seattle, WA), May 15–18, 2006, B.R. Marple, M.M. Hyland, Y.-Ch. Lau, R.S. Lima, and J. Voyer, Ed., ASM International, Materials Park, OH, 2006.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号