首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The performance of an innovative delta-doped AlGaN/AlN/GaN heterojunction field-effect transistor (HFET) structure is reported. The epitaxial heterostructures were grown on semi-insulating SiC substrates by low-pressure metalorganic chemical vapour deposition. These structures exhibit a maximum carrier mobility of 1058 cm2/V s and a sheet carrier density of 2.35×1013 cm-2 at room temperature, corresponding to a large ns μn product of 2.49×1016 V s. HFET devices with 0.25 μm gate length were fabricated and exhibited a maximum current density as high as 1.5 A/mm (at VG=+1 V) and a peak transconductance of gm=240 mS/mm. High-frequency device measurements yielded a cutoff frequency of ft≃50 GHz and maximum oscillation frequency fmax≃130 GHz  相似文献   

2.
Al0.3Ga0.7N/GaN high electron mobility transistor (HEMT) structures have been grown on resistive Si(111) substrate by molecular beam epitaxy (MBE) using ammonia (NH3). The use of an AlN/GaN intermediate layer allows a resistive buffer layer to be obtained. High sheet carrier density and high electron mobility arc obtained in the channel. A device with 0.5 μm gate length has been realised exhibiting a maximum extrinsic transconductance of 160 mS/mm and drain-source current exceeding 600 mA/mm. Small-signal measurements show ft of 17 GHz and fmax of 40 GHz  相似文献   

3.
Undoped AlGaN/GaN HEMTs for microwave power amplification   总被引:5,自引:0,他引:5  
Undoped AlGaN/GaN structures are used to fabricate high electron mobility transistors (HEMTs). Using the strong spontaneous and piezoelectric polarization inherent in this crystal structure a two-dimensional electron gas (2DEG) is induced. Three-dimensional (3-D) nonlinear thermal simulations are made to determine the temperature rise from heat dissipation in various geometries. Epitaxial growth by MBE and OMVPE are described, reaching electron mobilities of 1500 and 1700 cm 2/Ns, respectively, For electron sheet density near 1×1013/cm2, Device fabrication is described, including surface passivation used to sharply reduce the problematic current slump (dc to rf dispersion) in these HEMTs. The frequency response, reaching an intrinsic ft of 106 GHz for 0.15 μm gates, and drain-source breakdown voltage dependence on gate length are presented. Small periphery devices on sapphire substrates have normalized microwave output power of ~4 W/mm, while large periphery devices have ~2 W/mm, both thermally limited. Performance, without and with Si3N4 passivation are presented. On SiC substrates, large periphery devices have electrical limits of 4 W/mm, due in part to the limited development of the substrates  相似文献   

4.
We have demonstrated the first Ga2O3(Gd2O3) insulated gate n-channel enhancement-mode In0.53Ga0.47As MOSFET's on InP semi-insulating substrate. Ga2O3(Gd2 O3) was electron beam deposited from a high purity single crystal Ga5Gd3O12 source. The source and drain regions of the device were selectively implanted with Si to produce low resistance ohmic contacts. A 0.75-μm gate length device exhibits an extrinsic transconductance of 190 mS/mm, which is an order of magnitude improvement over previously reported enhancement-mode InGaAs MISFETs. The current gain cutoff frequency, ft, and the maximum frequency of oscillation, fmax, of 7 and 10 GHz were obtained, respectively, for a 0.75×100 μm2 gate dimension device at a gate voltage of 3 V and drain voltage of 2 V  相似文献   

5.
正AlGaN/GaN HEMTs with 0.2μm V-gate recesses were developed.The 0.2μm recess lengths were shrunk from the 0.6μm designed gate footprint length after isotropic SiN deposition and anisotropic recessed gate dry etching.The AlGaN/GaN HEMTs with 0.2μm V-gate recesses on sapphire substrates exhibited a current gain cutoff frequency f_t of 35 GHz and a maximum frequency of oscillation f_(max) of 60 GHz.At 10 GHz frequency and 20 V drain bias,the V-gate recess devices exhibited an output power density of 4.44 W/mm with the associated power added efficiency as high as 49%.  相似文献   

6.
SiNx/InP/InGaAs doped channel passivated heterojunction insulated gate field effect transistors (HIGFETs) have been fabricated for the first time using an improved In-S interface control layer (ICL). The insulated gate HIGFETs exhibit very low gate leakage (10 nA@VGS =±5 V) and IDS (sat) of 250 mA/mm. The doped channel improves the DC characteristics and the HIGFETs show transconductance of 140-150 mS/mm (Lg=2 μm), ft of 5-6 GHz (Lg=3 μm), and power gain of 14.2 dB at 3 GHz. The ICL HIGFET technology is promising for high frequency applications  相似文献   

7.
An excellent cutoff frequency (ft) as high as 400 GHz was successfully realized in 45-nm-gate pseudomorphic InGaAs/InAlAs high electron mobility transistors (HEMTs). An additional vertical gate-recess suppressed short-channel effects, while keeping good pinchoff characteristics. Gate length (Lg) dependence of electron transit time (τtransit) implied an increased saturation velocity (υs) of 3.6×107 cm/s in the developed pseudomorphic HEMTs. This ft is the highest value ever reported for any transistors to date  相似文献   

8.
AlGaN/GaN high-electron mobility transistors on (001)-oriented silicon substrates with a 0.1-mum gamma-shaped gate length are fabricated. The gate technology is based on a silicon nitride (SiN) thin film and uses a digital etching technique to perform the recess through the SiN mask. An output current density of 420 mA/mm and an extrinsic transconductance gm of 228 mS/mm are measured on 300-mum gate-periphery devices. An extrinsic cutoff frequency ft of 28 GHz and a maximum oscillation frequency fmax of 46 GHz are deduced from S-parameter measurements. At 2.15 GHz, an output power density of 1 W/mm that is associated to a power-added efficiency of 17% and a linear gain of 24 dB are achieved at VDS = 30 V and VGS = -1.2 V.  相似文献   

9.
The total emitter to collector delay for a Pnp AlGaAs/GaAs HBT has been reduced to 4.8 ps by employing a thin base (325 Å) and collector (2300 Å). Simultaneously, a low base sheet resistance of 170 ohms/square was achieved with tellurium doping. A higher collector doping than is typically used permitted operation at collector current densities in excess of 5×104 A/cm2. A single emitter (2×4 μm2) and a single base contact device topology has an ft and fmax of 33 and 66 GHz, respectively  相似文献   

10.
We report on the noise performance of low power 0.25 μm gate ion implanted D-mode GaAs MESFETs suitable for wireless personal communication applications. The 0.25 μm×200 μm D-mode MESFET has a ft of 18 GHz and fmax of 33 GHz at a power level of 1 mW (power density of 5 mW/mm). The noise characteristics at 4 GHz for the D-mode MESFET are Fmin=0.65 dB and Gassoc =13 dB at 1 mW. These results demonstrate that the GaAs D-mode MESFET is also an excellent choice for low power personal communication applications  相似文献   

11.
An all implanted self-aligned n-channel JFET fabrication process is described where Zn implantation is used to form the p+ gate region. A refractory metal (W) gate contact is used to allow subsequent high temperature activation of the self-aligned Si source and drain implant. 0.7 μm JFET's have a maximum transconductance of 170 mS/mm with a saturation current of 100 mA/mm at a gate bias of 0.9 V. The p+/n homojunction gate has a turn on voltage of 0.95 V at a current of 1 mA/mm. The drain-source breakdown voltage is 6.5 V. Microwave measurements made at a gate bias of 1 V show an ft of 19 GHz with an fmax of 36 GHz. These devices show promise for incorporation in both DCFL and complementary logic circuits  相似文献   

12.
Collector-up InGaAs/InAlAs/InP heterojunction bipolar transistors (HBTs) were successfully fabricated, and their DC and microwave characteristics measured. High collector current density operation (Jc>30 kA/cm2) and high base-emitter junction saturation current density (J0>10-7 A/cm2) were achieved. A cutoff frequency of f t=24 GHz and a maximum frequency of oscillation f max=20 GHz at a collector current density of J0 =23 kA/cm2 were achieved on a nominal 5-μm×10-μm device  相似文献   

13.
Surface passivation of undoped AlGaN/CaN HEMT's reduces or eliminates the surface effects responsible for limiting both the RF current and breakdown voltages of the devices. Power measurements on a 2×125×0.5 μm AlGaN/GaN sapphire based HEMT demonstrate an increase in 4 GHz saturated output power from 1.0 W/mm [36% peak power-added efficiency (PAE)] to 2.0 W/mm (46% peak PAE) with 15 V applied to the drain in each case. Breakdown measurement data show a 25% average increase in breakdown voltage for 0.5 μm gate length HEMT's on the same wafer. Finally, 4 GHz power sweep data for a 2×75×0.4 μm AlGaN/GaN HEMT on sapphire processed using the Si3N4 passivation layer produced 4.0 W/mm saturated output power at 41% PAE (25 V drain bias). This result represents the highest reported microwave power density for undoped sapphire substrated AlGaN/GaN HEMT's  相似文献   

14.
The authors report the DC and RF performance of nominally 0.2-μm-gate length atomic-planar doped pseudomorphic Al0.3Ga0.7As/In0.25Ga0.75As modulation-doped field-effect transistors (MODFETs) with fT over 120 GHz. The devices exhibit a maximum two-dimensional electron gas (2 DEG) sheet density of 2.4×1012 cm-2, peak transconductance g m of 530-570 mS/mm. maximum current density of 500-550 mA/mm, and peak current-gain cutoff frequency fT of 110-122 GHz. These results are claimed to be among the best ever reported for pseudomorphic AlGaAs/InGaAs MODFETs and are attributed to the high 2 DEG sheet density, rather than an enhanced saturation velocity, in the In0.25Ga0.75As channel  相似文献   

15.
Trapping effects and microwave power performance in AlGaN/GaN HEMTs   总被引:14,自引:0,他引:14  
The dc small-signal, and microwave power output characteristics of AlGaN/GaN HEMTs are presented. A maximum drain current greater than 1 A/mm and a gate-drain breakdown voltage over 80 V have been attained. For a 0.4 μm gate length, an fT of 30 GHz and an fmax of 70 GHz have been demonstrated. Trapping effects, attributed to surface and buffer layers, and their relationship to microwave power performance are discussed. It is demonstrated that gate lag is related to surface trapping and drain current collapse is associated with the properties of the GaN buffer layer. Through a reduction of these trapping effects, a CW power density of 3.3 W/mm and a pulsed power density of 6.7 W/mm have been achieved at 3.8 GHz  相似文献   

16.
RF and microwave noise performances of strained Si/Si0.58 Ge0.42 n-MODFETs are presented for the first time. The 0.13 μm gate devices have de-embedded fT=49 GHz, fmax =70 GHz and a record intrinsic gm=700 mS/mm. A de-embedded minimum noise figure NFmin=0.3 dB with a 41 Ω noise resistance Rn and a 19 dB associated gain Gass are obtained at 2.5 GHz, while NFmin=2.0 dB with Gass=10 dB at 18 GHz. The noise parameters measured up to 18 GHz and from 10 to 180 mA/mm with high gain and low power dissipation show the potential of SiGe MODFETs for mobile communications  相似文献   

17.
A simple and low-cost time-domain reflectometer using two pulse generators and a high bandwidth sample and hold amplifier is presented. The design has been achieved using an MMIC commercial foundry process from OMMIC (pHEMT ft=100 GHz). The bandwidth of the sampler is more than 10 GHz and the minimum pulse width generated is less than 50 ps. The total active area is less than 3 mm2  相似文献   

18.
Two-dimensional self-consistent full band Monte Carlo (FBMC) simulator was developed for electron transport in wurtzite phase AlGaN/GaN heterojunction (HJ) FET. Recessed gate Al0.2Ga0.8N/GaN HJFET structures with an undoped cap layer were simulated, where the spontaneous and piezoelectric polarization effects were taken into account. The polarization effect was shown to not only increase the current density, but also improve the carrier confinement, and hence improve the transconductance. An off-state drain breakdown voltage (BVds) of 300 V and a maximum linear output power (Pmax) of 46 W/mm were predicted for a 0.9-μm gate device. For a 0.1-μm gate device, 60 V BVds , 20 W/mm Pmax, and 160 GHz current-gain cutoff frequency were predicted. Although there is considerable uncertainty due to lack of information on the band structure, scattering rates, and surface conditions, the present results indicate a wide margin for improvements over current performance of AlGaN/GaN HJFETs in the future. To our knowledge, this is the first report on the FBMC simulation for AlGaN/GaN HJFETs  相似文献   

19.
Shallow p+-regions in GaAs, formed by Cd ion implantation, have been used as the gate region for GaAs JFETs. 0.7 μm gate length JFETs demonstrated a transconductance of 165 mS/mm a saturation current of 130 mA/mm, an ft of 26 GHz, and an f max of 42 GHz. These frequency metrics are superior to previous Zn-gate JFETs of similar dimensions  相似文献   

20.
We report the first CW Ka-band radio-frequency (RF) power measurements at 35 GHz from a passivated Al0.82In0.18N/GaN high-electron mobility transistor on SiC with 9.8-nm-thin barrier. This device delivered a maximum of 5.8 W/mm with a power-added efficiency of 43.6% biased at VDS = 20 V and 10% IDSS when matched for power at CW. The device was grown by metal-organic chemical vapor deposition with 2.8-?m source-drain spacing and a gate length of 160 nm. An excellent ohmic contact was obtained with an Rc of 0.62 ?·mm. The maximum extrinsic transconductance was 354 mS/mm with an IDSS of 1197 mA/mm at a VGS of 0 V, an ft of 79 GHz, and an fmax of 113.8 GHz.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号