首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 72 毫秒
1.
基于自适应Tent混沌搜索的粒子群优化算法   总被引:1,自引:0,他引:1  
为解决粒子群优化算法易于陷入局部最优问题,提出基于自适应Tent混沌搜索的粒子群优化算法。应用Tent 映射初始化均匀分布的粒群,并以当前整个粒子群迄今为止搜索到的最优位置为基础产生Tent混沌序列,混沌序列的搜索范围采用自适应调整方法。该方法可以有效避免计算的盲目性,还能够快速搜寻到最优解。实验表明该算法在多个标准测试函数下都超越了同类改进算法。  相似文献   

2.
Tent混沌粒子群算法及其在结构优化决策中的应用   总被引:17,自引:2,他引:17  
首先对Tent混沌序列加以改进,将其引入粒子群算法中;然后提出一种基于改进的Tent映射的粒子群算法.采取分阶段更新的优化策略,使其在搜索初期更具遍历性,在搜索后期,通过人为更替最差粒子的速度和位置,使算法具有更快的收敛速度与更好的全局搜索能力.构建一种资源配置结构优化模型,并将改进的Tent映射粒子群算法引入资源配置结构优化决策中,在寻优速度、精度和成功率等方面均显示出良好的优化效果.  相似文献   

3.
提出一种基于Tent混沌变异粒子群的路径滚动规划算法。在改进的粒子群算法中为防止早收敛,加入自适应混沌变异操作,在加强算法局部搜索能力的同时保证搜索过程中种群的多样性。仿真实验结果表明,在障碍物复杂的环境下,利用该算法也可以迅速规划出一条全局较优的安全避碰路径。  相似文献   

4.
一种新的改进粒子群优化算法   总被引:2,自引:0,他引:2  
在现有文献研究的基础上,首先阐述标准粒子群优化算法的基本原理,并对它加以分析,指出标准粒子群优化算法初始粒子种群的产生速度慢、在优化过程中容易陷入局部最优等缺点,然后对其缺点进行改进,将改进的粒子群优化算法和标准粒子群优化算法进行实验对比分析研究,从实验结果中可知,改进粒子群优化算法在收敛速度及收敛精度上都明显好于标准粒子群优化方法.  相似文献   

5.
质心粒子群优化算法   总被引:3,自引:2,他引:3       下载免费PDF全文
为了加快粒子群算法收敛速度,提出了质心粒子群优化算法(CPSO)。算法通过计算种群所有个体最优记录所构成的一个群体的质心,对种群个体当前的最优记录和全局最优记录进行比较、替换或更新等操作,从而加快算法的收敛速度。仿真实验表明,在求解相同精度的情况下,质心粒子群优化算法的收敛速度优于线性递减惯性权重粒子群优化算法(LDWPSO)。  相似文献   

6.
自适应变异的粒子群优化算法   总被引:5,自引:3,他引:5  
针对粒子群算法的早熟收敛问题,提出一种新的基于群体适应度变化率自适应变异的粒子群优化算法。该算法根据群体适应度变化率自适应调整惯性权重的取值,根据当前种群的平均粒距对种群中部分粒子进行变异操作。自适应调整与变异操作能增强算法跳出局部最优的能力,增大寻找全局最优的几率。对几种典型函数的测试结果表明,新算法的全局搜索能力有了明显的提高,有效避免了早熟收敛问题。  相似文献   

7.
针对平衡优化器算法存在收敛速度慢且容易陷入局部最优的问题,提出一种改进的平衡优化器算法.引入Tent混沌映射初始化种群提高迭代前期的收敛速度,通过透镜成像学习策略避免迭代后期陷入局部最优.选取12个通用的标准测试函数进行仿真实验,并与多个智群优化算法进行对比,通过实验验证改进后算法寻优性能的优越性.最后,将改进后的算法应用于移动机器人路径规划任务,结果表明:相比较原算法,改进后的算法不但具有较高的搜索效率,而且能够搜索到更短的安全路径.  相似文献   

8.
基于克隆选择的粒子群优化算法   总被引:2,自引:0,他引:2  
粒子群优化是一种简单有效的随机全局优化技术.将克隆选择引入拉子群优化算法,提出了一种基于克隆选择的拉子群优化算法.算法的主要特点是利用克隆和变异等操作,提高收敛速度和种群的多样性.仿真程序表明,该算法能以较快速度完成给定范围的搜索和全局优化任务.  相似文献   

9.
基于模拟退火的粒子群优化算法   总被引:48,自引:6,他引:48  
粒子群优化算法是一类简单有效的随机全局优化技术。该文把模拟退火思想引入到具有杂交和高斯变异的粒子群优化算法中,给出了一种基于模拟退火的粒子群优化算法。该算法基本保持了粒子群优化算法简单容易实现的特点,但改善了粒子群优化算法摆脱局部极值点的能力,提高了算法的收敛速度和精度。四个基准测试函数的仿真对比结果表明,该算法不仅增强了全局收敛性,而且收敛速度和精度均优于粒子群优化算法。  相似文献   

10.
带自变异算子的粒子群优化算法   总被引:2,自引:1,他引:2  
针对粒子群优化算法中出现的早熟收敛问题,论文提出了一种带自变异算子的粒子群优化算法。该算法在运行过程中增加了随机变异算子,通过对当前最佳粒子进行随机变异来增强粒子群优化算法跳出局部最优解的能力。对几种典型函数的测试结果表明,新算法的全局搜索能力有了显著提高,并且能够有效避免早熟收敛问题。  相似文献   

11.
李明  逄博  年福忠 《计算机工程》2012,38(8):134-136
粒子群优化(PSO)粒子滤波算法容易陷入局部最优,从而降低算法精度。针对该问题,提出一种基于混沌的PSO粒子滤波算法。该算法通过混沌搜索算法找到全局最优位置,驱散聚集在局部最优的粒子群,使其向全局最优位置靠近,增加有效估计粒子数,抑制粒子退化与枯竭问题。仿真结果表明,与传统的粒子滤波算法和PSO粒子滤波算法相比,改进算法的估计精度有较大提高。  相似文献   

12.
一种新的双予群PSO算法   总被引:1,自引:1,他引:1  
焦巍  刘光斌 《计算机工程》2009,35(16):173-174
提出一种新的双子群粒子群优化(PSO)算法。充分利用搜索域内的有效信息,通过2组搜索方向相反的主、辅子群之间的相互协同,扩大搜索范围。在不增加粒子群规模的前提下,提高解高维最优化问题的精度,降低粒子群优化算法陷入局部最优点的风险。3种典型函数的仿真结果及与2种经典PSO算法的比较结果验证了该算法的有效性。  相似文献   

13.
陈严  刘利民 《计算机工程》2011,37(1):170-172
运用罚函数法将约束优化问题转化为无约束优化问题,同时采用实数编码方案,将离散的车辆路径问题转化成准连续优化问题,在此基础上,用改进的粒子群优化算法求解最优值.改进的粒子群算法引入了杂交PSO模型和变异算子.仿真实验结果表明,该算法在保持粒子种群多样性、提高收敛速度和搜索精度、扩大搜索范围、避免过早收敛于局部极值点等方面...  相似文献   

14.
基于粒子群优化算法的电力系统无功优化   总被引:1,自引:0,他引:1       下载免费PDF全文
陶国正  徐志成 《计算机工程》2010,36(20):198-199
针对粒子群优化算法在进化中随种群多样性降低易出现早熟收敛等问题,结合全局-局部最优模型,提出一种改进的全局-局部参数最优粒子群优化算法。利用全局-局部最优惯性权重及全局-局部最优加速度常数,简化速度更新方程,使算法性能得到改善。将该算法应用于电力系统无功优化中,仿真结果表明,网损平均值更低,寻优性能更好,优化的网损值集中在较小的区间。  相似文献   

15.
基于边界变异的量子粒子群优化算法   总被引:4,自引:0,他引:4       下载免费PDF全文
林星  冯斌  孙俊 《计算机工程》2008,34(12):187-188
将边界变异操作引入到量子粒子群优化算法中,提出基于边界变异的量子粒子群优化算法QPSOB。该算法将越界粒子随机分布在边界附近的可行域内,以增加种群的多样性、提高算法的全局搜索能力。仿真实验证明其全局收敛性能优于量子粒子群优化算法。  相似文献   

16.
为提高粒子群优化(PSO)算法的优化性能,提出一种改进的小波变异粒子群算法(IPSOWM)。在每次迭代时以一定的概率选中粒子进行小波变异扰动,从而克服PSO算法后期易发生早熟收敛和陷入局部最优的缺点。数值仿真结果表明,IPSOWM算法的搜索精度、收敛速度及稳定性均优于PSO和PSOWM算法。  相似文献   

17.
K均值算法简单快速,但其结果容易受初始聚类中心影响,并且容易陷入局部极值。该文结合粒子群优化算法和免疫系统中的免疫调节机制与免疫记忆功能对K均值算法进行改进,提出一种基于免疫粒子群优化的聚类算法。实验结果证明,该算法解决了K均值算法存在的对初值敏感的缺点,聚类结果稳定,而且比基于粒子群优化的聚类算法具有更好的聚类效果。  相似文献   

18.
针对标准粒子群算法全局搜索能力差、易陷入早熟等问题,提出了基于随机鞭策机制的散漫度粒子群算法。首先,给出了粒子散漫度概念,通过动态地对各个粒子的散漫程度进行评估,判断粒子状态,并通过随机鞭策机制处理散漫粒子,避免算法陷入局部最优;其次,对积极运动的粒子利用个体历史最优位置进行处理,加快算法收敛速度;对11个标准函数进行测试,并与标准粒子群算法和其他改进算法进行对比,实验结果表明,基于散漫度的快速收敛粒子群算法寻优精度更高,收敛速度更快。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号