首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
This paper investigates the problem of robust output feedback stabilization for a family of uncertain nonlinear systems with uncontrollable/unobservable linearization. To achieve global robust stabilization via smooth output feedback, we introduce a rescaling transformation with an appropriate dilation, which turns out to be very effective in dealing with uncertainty of the system. Using this rescaling technique combined with the nonseparation principle based design method, we develop a robust output feedback control scheme for uncertain nonlinear systems in the p-normal form, under a homogeneous growth condition. The construction of smooth state feedback controllers and homogeneous observers uses only the knowledge of the bounding homogeneous system rather than the uncertain system itself. The robust output feedback design approach is then extended to a class of uncertain cascade systems beyond a strict-triangular structure. Examples are provided to illustrate the results of the paper.  相似文献   

2.
We present a nonsmooth output feedback framework for local and/or global stabilization of a class of nonlinear systems that are not smoothly stabilizable nor uniformly observable. A systematic design method is presented for the construction of stabilizing, dynamic output compensators that are nonsmooth but HÖlder continuous. A new ingredient of the proposed output feedback control scheme is the introduction of a recursive observer design algorithm, making it possible to construct a reduced-order observer step-by-step, in a naturally augmented manner. Such a nonsmooth design leads to a number of new results on output feedback stabilization of nonlinear systems. One of them is the global stabilizability of a chain of odd power integrators by HÖlder continuous output feedback. The other one is the local stabilization using nonsmooth output feedback for a wide class of nonlinear systems in the Hessenberg form studied in a previous paper, where global stabilizability by nonsmooth state feedback was already proved to be possible.  相似文献   

3.
This paper proposes a novel approach to robust backstepping for global stabilization of uncertain nonlinear systems via output feedback. The design procedure developed in this paper is based on the concept of state‐dependent scaling, which handles output‐feedback stabilization problems of strict‐feedback systems with various structures of uncertainties in a unified way. The proposed method is suitable for numerical computation. The theory of the method employs the Schur complements formula instead of Young's inequality and completing the squares. This paper shows a condition of allowable uncertainty size under which an uncertain system is globally stabilized by output feedback. A class of systems is shown to be always globally stabilizable for arbitrarily large nonlinear size of uncertainties. A recursive procedure of robust observer design for such a class of uncertain systems is presented. Copyright © 2000 John Wiley & Sons, Ltd.  相似文献   

4.
In this paper, globally asymptotical stabilization problem for a class of planar switched nonlinear systems with an output constraint via smooth output feedback is investigated. To prevent output constraint violation, a common tangent‐type barrier Lyapunov function (tan‐BLF) is developed. Adding a power integrator approach (APIA) is revamped to systematically design state‐feedback stabilizing control laws incorporating the common tan‐BLF. Then, based on the designed state‐feedback controllers and a constructed common nonlinear observer, smooth output‐feedback controllers, which can make the system output meet the predefined constraint during operation, are proposed to deal with the globally asymptotical stabilization problem of planar switched nonlinear systems under arbitrary switchings. A numerical example is employed to verify the proposed method.  相似文献   

5.
This paper provides a solution to the problem of output feedback stabilization of systems described by Euler-Lagrange equations perturbed by nondissipative forces. This class of forces appears in some applications where we must take into account the interaction of the system with its environment. The nonlinear dependence on the unmeasurable part of the state and the loss of the fundamental passivity property render most of the existing results on stabilization of nonlinear systems unapplicable to this problem. The technique we use consists of finding a dynamic output feedback controller and a nonlinear change of coordinates such that the closed loop can be decomposed as a cascade of an asymptotically stable system and an input-to-state stable system. This should be contrasted with the well-known passivity-based technique that aims at a feedback interconnection of passive systems. We believe this design methodology to be of potential applicability to other stabilization problems where passivity arguments are unapplicable.  相似文献   

6.
This paper focuses on a class of large-scale interconnected stochastic nonlinear systems. The interconnections are bounded by strong nonlinear functions that contain first order and higher order polynomials as special cases. The problem we address is to design a decentralized controller such that the closed-loop, large-scale, interconnected stochastic nonlinear system is globally asymptotically stable in probability for all admissible interconnections. It is shown that the decentralized global stabilization via both state feedback and output feedback can be solved by a Lyapunov-based recursive design method  相似文献   

7.
This paper is concerned with the problem of global stabilization by state feedback and output feedback for a class of time-delay nonlinear systems that are dominated by a triangular system satisfying linear growth conditions. By solving the Lyapunov equation and constructing the appropriate Lyapunov-Krasovskii functionals (LKF), the linear and memoryless state feedback controller and output feedback controller making the closed-loop system globally asymptotically stable (GAS) are explicitly constructed respectively. Comparing our design scheme with the backstepping method which has been widely used to deal with strictly feedback nonlinear systems, our design scheme is much simpler and more efficient. An example is given to show that the proposed design procedures are very simple and efficient.  相似文献   

8.
For some switched nonlinear systems, stabilization can be achieved under arbitrary switching with state feedback control. Due to switching zero dynamics, output feedback stabilization for some switched nonlinear systems needs dwell time between switching to guarantee system stability. In this paper, we consider a class of switched nonlinear systems with unknown parameters and unknown switching signals. We design a robust output feedback controller that stabilizes the system under a class of switching signals with average dwell time (ADT) where the value of ADT can be reduced by adjusting the control gain. For some special cases, common quadratic Lyapunov functions of the closed‐loop systems can be found and the value of ADT is further relaxed. Some examples and simulations are provided to validate the results.  相似文献   

9.
In this note, we address the problem of output feedback stabilization for a class of planar systems that are inherently nonlinear in the sense that the linearized system at the origin is neither controllable nor observable. Moreover, the uncontrollable modes contain eigenvalues on the right-half plane. By the well-known necessary condition, such planar systems cannot be stabilized, even locally by any smooth output feedback, and hence must be dealt with by nonsmooth output feedback. The main contribution of this work is the development of a non-Lipschitz continuous output feedback design method that leads to a solution to the problem. The proposed output feedback control scheme is not based on the separation principle but rather, relies on the design of a reduced-order nonlinear observer from an earlier paper with an appropriate twist, and the tool of adding a power integrator. A non-Lipschitz continuous output feedback controller is explicitly constructed, achieving global stabilization of the planar systems without imposing the high-order growth conditions required in a previous paper.  相似文献   

10.
仿射非线性系统的动态输出反馈镇定   总被引:7,自引:1,他引:7  
对能用状态反馈镇定且完全能观的仿射非线性系统,给出了保证闭环系统渐近稳定 的动态补偿器的设计方法.  相似文献   

11.
We study the problem of global stabilization by smooth output feedback, for a class of n-dimensional homogeneous systems whose Jacobian linearization is neither controllable nor observable. A new output feedback control scheme is proposed for the explicit design of both homogeneous observers and controllers. While the smooth state feedback control law is constructed based on the tool of adding a power integrator, the observer design is new and carried out by developing a machinery, which makes it possible to assign the observer gains one-by-one, in an iterative manner. Such design philosophy is fundamentally different from that of the traditional "Luenberger" observer in which the observer gain is determined by observability. In the case of linear systems, our design method provides not only a new insight but also an alternative solution to the output feedback stabilization problem. For a class of high-order nonhomogeneous systems, we further show how the proposed design method, with an appropriate modification, can still achieve global output feedback stabilization. Examples and simulations are given to demonstrate the main features and effectiveness of the proposed output feedback control schemes.  相似文献   

12.
This paper addresses the problem of using output feedback to globally control a class of nonlinear systems whose output functions are not precisely known. First, for the nominal linear system, we design a homogeneous state compensator without requiring precise information of the output function, and construct a nonlinear stabilizer with adjustable coefficients by using the generalized adding a power integrator technique. Then based on the homogeneous domination approach, a scaling gain is introduced into the proposed output feedback controller, which can be used by tuning the scaling gain to solve: (i) the problem of global output feedback stabilization for a class of upper‐triangular systems; and (ii) the problem of global practical output tracking for a class of lower‐triangular systems. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

13.
This paper is concerned with global stabilization via output feedback for a class of stochastic nonlinear systems with time‐varying continuous output function. Under linear growth conditions, a new double‐domination method is proposed for the first time to construct an output‐feedback stabilizing controller. Different from the related results, the design of the observer is performed without using the information on the output function and nonlinearities. This paper also provides a viewpoint at the feedback stabilization to eliminate the continuous measurement error originating from inaccurate detection of system state. A simulation example is presented to demonstrate the effectiveness of control strategy.  相似文献   

14.
This paper considers the problem of output feedback stabilization for a class of stochastic feedforward nonlinear systems with input and state delay. Under a set of coordinate transformations, we first design a linear output feedback controller for a nominal system. Then, with the aid of feedback domination technique and an appropriate Lyapunov–Krasovskii functional, it is proved that the proposed linear output feedback controller can drive the closed‐loop system globally asymptotically stable in probability. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

15.
In this paper, the global sampled‐data output‐feedback stabilization problem is considered for a class of stochastic nonlinear systems. First, based on output‐feedback domination technique and emulation approach, a systematic design procedure for sampled‐data output‐feedback controller is proposed for a class of stochastic lower‐triangular nonlinear systems. It is proved that the proposed sampled‐data output‐feedback controller will stabilize the given stochastic nonlinear system in the sense of mean square exponential stability. Because of the domination nature of the proposed control approach, it is shown that the proposed control approach can also be used to handle the global sampled‐data output‐feedback stabilization problems for a more general class of stochastic non‐triangular nonlinear systems. Finally, simulation examples are given to demonstrate the effectiveness of the proposed method. Copyright © 2017 John Wiley & Sons, Ltd.  相似文献   

16.
This paper aims to propose an additive‐state‐decomposition‐based tracking control framework, based on which the output feedback tracking problem is solved for a class of nonminimum phase systems with measurable nonlinearities and unknown disturbances. This framework is to ‘additively’ decompose the output feedback tracking problem into two more tractable problems, namely an output feedback tracking problem for a linear time invariant system and a state feedback stabilization problem for a nonlinear system. Then, one can design a controller for each problem respectively using existing methods, and these two designed controllers are combined together to achieve the original control goal. The main contribution of the paper lies on the introduction of an additive state decomposition scheme and its implementation to mitigate the design difficulty of the output feedback tracking control problem for nonminimum phase nonlinear systems. To demonstrate the effectiveness, an illustrative example is given. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

17.
This paper addresses the problem of semi‐global stabilization by output feedback for a class of nonlinear systems whose output gains are unknown. For each subsystem, we first design a state compensator and use the compensator states to construct a control law to stabilize the nominal linear system without the perturbing nonlinearities. Then, combining the output feedback domination approach with block‐backstepping scheme, a series of homogeneous output feedback controllers are constructed recursively for each subsystem and the closed‐loop system is rendered semi‐globally asymptotically stable.  相似文献   

18.
This note studies the problem of global finite-time stabilization by dynamic output feedback for a class of continuous but nonsmooth nonlinear systems. By extending the adding-a-power-integrator technique and a special continuous observer design, a dynamic output feedback controller is explicitly constructed to render the systems globally finite-time stable. The novelty of the note is the development of a recursive design procedure, which takes full advantage of the continuous structure of the systems in constructing the state feedback stabilizer and the continuous observer with rigorously selected gains.  相似文献   

19.
本文研究一类非线性系统的自适应抗测量噪声的输出反馈镇定问题. 所研究的非线性系统输出中存在正的且 有界的乘性噪声. 非线性项的增长率为一个未知常数乘以输出的幂函数加上带有时滞输出的幂函数. 首先, 证明一个矩 阵不等式. 其次, 设计含有3个时变增益的输出反馈控制器, 并给出增益的自适应律, 然后, 构造适当的Lyapunov-Krasovskii 泛函, 给出确保闭环系统渐近稳定的充分条件. 最后, 仿真实验验证该方法的可行性和有效性.  相似文献   

20.
This note focuses on a class of stochastic time-delay nonlinear systems. The problem we address is to design a controller such that the closed-loop system is exponentially stable. It is shown that the stabilization via output feedback can be solved by a Lyapunov-based recursive design method.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号