首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 585 毫秒
1.
BACKGROUND: Several intracellular pathogens, including Listeria monocytogenes, use components of the host actin-based cytoskeleton for intracellular movement and for cell-to-cell spread. These bacterial systems provide relatively simple model systems with which to study actin-based motility. Genetic analysis of L. monocytogenes led to the identification of the 90 kD surface-bound ActA polypeptide as the sole bacterial factor required for the initiation of recruitment of host actin filaments. Numerous host actin-binding proteins have been localized within the actin-based cytoskeleton that surrounds Listeria once it is inside a mammalian cell, including alpha-actinin, fimbrin, filamin, villin, ezrin/radixin, profilin and the vasodilator-stimulated phosphoprotein, VASP. Only VASP is known to bind directly to ActA. We sought to determine which regions of the ActA molecule interact with VASP and other components of the host microfilament system. RESULTS: We used the previously developed mitochondrial targeting assay to determine regions of the ActA protein that are involved in the recruitment of the host actin-based cytoskeleton. By examining amino-terminally truncated ActA derivatives for their ability to recruit cytoskeletal proteins, an essential element for actin filament nucleation was identified between amino acids 128 and 151 of ActA. An ActA derivative from which the central proline-rich repeats were deleted retained its ability to recruit filamentous actin, albeit poorly, but was unable to bind VASP. CONCLUSIONS: Our studies reveal the initial interactions that take place between invading Listeria and host microfilament proteins. The listerial ActA polypeptide contains at least two essential sites that are required for efficient microfilament assembly: an amino-terminal 23 amino-acid region for actin filament nucleation, and VASP-binding proline-rich repeats. Hence, ActA represents a prototype actin filament nucleator. We suggest that host cell analogues of ActA exist and are important components of structures involved in cell motility.  相似文献   

2.
The ActA protein is an essential determinant of pathogenicity that is responsible for the actin-based motility of Listeria monocytogenes in mammalian cells and cell-free extracts. ActA appears to control at least four functions that collectively lead to actin-based motility: (1) initiation of actin polymerization, (2) polarization of ActA function, (3) transformation of actin polymerization into a motile force and (4) acceleration of movement mediated by the host protein profilin.  相似文献   

3.
Cell motility: complex dynamics at the leading edge   总被引:1,自引:0,他引:1  
The intracellular pathogen Listeria monocytogenes is a useful model for general actin-based cell motility, because it recruits host actin and associated proteins for movement. Recent data have shown that these associated proteins include the Ena/VASP family of proteins and the actin-related proteins Arp2 and Arp3.  相似文献   

4.
The Arp2/3 complex was first purified from Acanthamoeba castellanii by profilin affinity chromatography. The mechanism of interaction with profilin was unknown but was hypothesized to be mediated by either Arp2 or Arp3. Here we show that the Arp2 subunit of the complex can be chemically cross-linked to the actin-binding site of profilin. By analytical ultracentrifugation, rhodamine-labeled profilin binds Arp2/3 complex with a Kd of 7 microM, an affinity intermediate between the low affinity of profilin for barbed ends of actin filaments and its high affinity for actin monomers. These data suggest the barbed end of Arp2 is exposed, but Arp2 and Arp3 are not packed together in the complex exactly like two actin monomers in a filament. Arp2/3 complex also cross-links actin filaments into small bundles and isotropic networks, which are mechanically stiffer than solutions of actin filaments alone. Arp2/3 complex is concentrated at the leading edge of motile Acanthamoeba, and its localization is distinct from that of alpha-actinin, another filament cross-linking protein. Based on localization and actin filament nucleation and cross-linking activities, we propose a role for Arp2/3 in determining the structure of the actin filament network at the leading edge of motile cells.  相似文献   

5.
The small GTP-binding protein Cdc42 is thought to induce filopodium formation by regulating actin polymerization at the cell cortex. Although several Cdc42-binding proteins have been identified and some of them have been implicated in filopodium formation, the precise role of Cdc42 in modulating actin polymerization has not been defined. To understand the biochemical pathways that link Cdc42 to the actin cytoskeleton, we have reconstituted Cdc42-induced actin polymerization in Xenopus egg extracts. Using this cell-free system, we have developed a rapid and specific assay that has allowed us to fractionate the extract and isolate factors involved in this activity. We report here that at least two biochemically distinct components are required, based on their chromatographic behavior and affinity for Cdc42. One component is purified to homogeneity and is identified as the Arp2/3 complex, a protein complex that has been shown to nucleate actin polymerization. However, the purified complex alone is not sufficient to mediate the activity; a second component that binds Cdc42 directly and mediates the interaction between Cdc42 and the complex also is required. These results establish an important link between a signaling molecule, Cdc42, and a complex that can directly modulate actin networks in vitro. We propose that activation of the Arp2/3 complex by Cdc42 and other signaling molecules plays a central role in stimulating actin polymerization at the cell surface.  相似文献   

6.
The intracellular bacterial pathogen Listeria monocytogenes moves inside the host-cell cytoplasm propelled by continuous actin assembly at one pole of the bacterium. This process requires expression of the bacterial surface protein ActA. Recently, in order to identify the regions of ActA which are required for actin assembly, we and others have expressed different domains of ActA by transfection in eukaryotic cells. As this type of approach cannot address the role of ActA in the actin-driven bacterial propulsion, we have now generated several L. monocytogenes strains expressing different domains of ActA and analysed the ability of the different domains to trigger actin assembly and bacterial movement in both infected cells and cytoplasmic extracts. We show here that the amino-terminal part is critical for F-actin assembly and movement. The internal proline-rich repeats and the carboxy-terminal domains are not essential. However, in vitro motility assays have demonstrated that mutants lacking the proline-rich repeats domain of ActA moved two times slower (6+/-2 micrometers min(-1)) than the wild type (13 +/-3 micrometers min(-1)). In addition, phosphatase treatment of protein extracts of cells infected with the L. monocytogenes strains expressing the ActA variants suggested that phosphorylation may not be essential for ActA activity.  相似文献   

7.
The Arp2/3 complex, first isolated from Acanthamoeba castellani by affinity chromatography on profilin, consists of seven polypeptides; two actin-related proteins, Arp2 and Arp3; and five apparently novel proteins, p40, p35, p19, p18, and p14 (Machesky et al., 1994). The complex is homogeneous by hydrodynamic criteria with a Stokes' radius of 5.3 nm by gel filtration, sedimentation coefficient of 8.7 S, and molecular mass of 197 kD by analytical ultracentrifugation. The stoichiometry of the subunits is 1:1:1:1:1:1:1, indicating the purified complex contains one copy each of seven polypeptides. In electron micrographs, the complex has a bilobed or horseshoe shape with outer dimensions of approximately 13 x 10 nm, and mathematical models of such a shape and size are consistent with the measured hydrodynamic properties. Chemical cross-linking with a battery of cross-linkers of different spacer arm lengths and chemical reactivities identify the following nearest neighbors within the complex: Arp2 and p40; Arp2 and p35; Arp3 and p35; Arp3 and either p18 or p19; and p19 and p14. By fluorescent antibody staining with anti-p40 and -p35, the complex is concentrated in the cortex of the ameba, especially in linear structures, possibly actin filament bundles, that lie perpendicular to the leading edge. Purified Arp2/3 complex binds actin filaments with a Kd of 2.3 microM and a stoichiometry of approximately one complex molecule per actin monomer. In electron micrographs of negatively stained samples, Arp2/3 complex decorates the sides of actin filaments. EDC/NHS cross-links actin to Arp3, p35, and a low molecular weight subunit, p19, p18, or p14. We propose structural and topological models for the Arp2/3 complex and suggest that affinity for actin filaments accounts for the localization of complex subunits to actin-rich regions of Acanthamoeba.  相似文献   

8.
We previously showed that activation of polymorphonuclear leukocytes by leukotriene B4 (LTB4) and platelet-activating factor produces a rapidly oscillating actin polymerization/depolymerization response. In this study, we show that 1) oscillations are not due to the stimulated cyclic release of autocoids that could bind to cell surface receptors and activate subsequent cycles; 2) oscillations are not related to oscillations of ligand binding; and 3) the particular kinetic pattern is a property of the receptor, not of the binding constants of the ligand. The major conclusion of these studies is that the oscillations are a property of the intrinsic signaling pathways triggered by these chemoattractants. We also questioned whether increased actin nucleation activity was induced by LTB4 and found that, although LTB4 induced a transient actin nucleation response, there was not a direct correlation between oscillations of the actin polymerization/depolymerization and the actin nucleation activity. This suggests that processes other than actin nucleation, such as release of monomeric actin from monomer sequestering proteins and regulation of depolymerization, are likely to be involved.  相似文献   

9.
Adhesion of Listeria monocytogenes to intestinal endothelial cells is an important initial event in the pathogenesis of infection which is not well understood. The suggestion has been made that some proteins, including internalin and actin polymerisation protein (ActA), and carbohydrate molecules mediate, at least in part, the adhesion of listeria to certain cultured mammalian cells. This study investigated the role of a L. monocytogenes cell-surface protein of 104 kDa (p104) in adhesion to human intestinal enterocyte-like Caco-2 cell lines by transposon (Tn916) mutagenesis and a p104-specific monoclonal antibody (MAb-H7). Genotypic and phenotypic characteristics of Tn916-transformed L. monocytogenes strains, AAMU530 and AAMU572, revealed that these strains did not express p104, and the transposon had been inserted at a single locus in the structural gene. Strains AAMU530 and AAMU572 yielded only 10 and 6.3% adhesion to Caco-2 cells. Coating of L. monocytogenes and L. innocua wild-type strains with MAb-H7 reduced adhesion to Caco-2 cells from 100% to 50 and 45%, respectively, whereas on isotype control MAb EM-7G1 had no effect. Western blot analysis with MAb-H7 indicated that p104 is present in all Listeria spp. except in L. grayi. Furthermore, p104 is also present in internalin (BUG8) and ActA (LUT12) deficient strains, suggesting that p104 is indeed different from internalin or ActA proteins. Cytotoxicity analysis of strains AAMU530 and AAMU572 demonstrated that these strains, although haemolytic and phospholipase-positive, were avirulent when tested with a hybridoma B-lymphocyte cell line. Loss of virulence could be attributed to the interruption of adhesion of mutant strains to the hybridoma cell line. These results strongly suggest that p104 is an adhesion factor in L. monocytogenes and possibly in other Listeria species and is involved in adhesion to intestinal cells.  相似文献   

10.
The property of listeriolysin (LLO) to introduce soluble passenger proteins into the cytosol of antigen-presenting cells allows the induction of CD8+ cytotoxic T cells against such antigens. To overcome the potential problem of presentation of the immunodominant epitope LL091-99 by H-2Kd, a variant LLO92A was established in which Tyr 92 was replaced by Ala. Immunization of BALB/c mice with purified LLO92A failed to stimulate cytotoxic T cells specific for either the epitope LLO91-99 or for any other LLO-derived peptide. Injection of mixtures of purified LLO92A and soluble nucleoprotein (NP) of influenza virus into mice resulted in a strong cytotoxic T cell response exclusively directed against NP. The LLO92A variant was successfully used to generate, propagate and characterize a CD8 T cell line specific for the membrane-bound virulence factor ActA of Listeria monocytogenes. Interestingly, wildtype ActA bound to the surface of live L. monocytogenes was not presented by MHC class I molecules to the CD8+ T cell line.  相似文献   

11.
PD98059, a specific inhibitor of MEK-1 mitogen-activated protein (MAP) kinase kinase, blocked Listeria monocytogenes invasion into HeLa epithelial cells. The effects of PD98059 were reversible, as adherent extracellular bacteria were internalized upon removal of the drug. Previously, we reported that L. monocytogenes could activate ERK-1 and ERK-2 MAP kinases through the action of listeriolysin O (LLO) on the host cell (P. Tang, I. Rosenshine, P. Cossart, and B. B. Finlay, Infect. Immun. 64:2359-2361, 1996). We have now found that two other MAP kinase pathways, those of p38 MAP kinase and c-Jun N-terminal kinase, are also activated by wild-type L. monocytogenes. Mutants lacking functional LLO (hly mutants) were still invasive but only activated ERK-2 and only activated it at later (90-min) postinfection times. Two inhibitors of L. monocytogenes invasion, cytochalasin D, which disrupts actin polymerization, and wortmannin, which blocks phosphatidylinositol (PI) 3-kinase activity, did not block ERK-2 activation by wild-type L. monocytogenes and hly mutants. However, genistein, an inhibitor of tyrosine kinases, and PD98059 both blocked invasion and decreased ERK-2 activation. These results suggest that MEK-1 and ERK-2 activities are essential for L. monocytogenes invasion into host epithelial cells. This is the first report to show that a MAP kinase pathway is required for bacterial invasion.  相似文献   

12.
We summarize recent findings on the organization of the protein actin in eucaryotic cells. In particular we focus on how actin can be used to generate a vectorial force that is required for cell movement. These forces arise from protein molecules that recruit actin to the plasma membrane in such a manner that actin filaments extend outward from the cell body. This type of actin dependent force generation has been described in a nucleation-release model, which is one of several models currently being tested to explain actin dependent cell movement. Data in support of this model has arisen unexpectedly from studies of an intracellular bacteria, Listeria monocytogenes. This bacteria uses actin to propel itself during infection of eucaryotic cells. By studying Listeria movement, the roles of several eucaryotic actin interacting proteins have been identified. One of these is zyxin, a human protein that shares important structural and possibly functional properties with ActA, an actin dependent force generating protein of Listeria. We intend to test the function of these and other actin interacting proteins in a simplified system that should facilitate precise measurement of their properties of force generation in vitro.  相似文献   

13.
14.
Movement of the malaria parasite into a host erythrocyte during invasion is thought to involve polymerization of parasite actin. We have used F-actin affinity chromatography to isolate actin-binding proteins from Plasmodium knowlesi merozoites, in an attempt to identify proteins responsible for regulating parasite actin polymerization during invasion. Five major proteins, of molecular masses 75, 70, 48, 40 and 34 kDa, were reproducibly eluted from the F-actin columns. The 70 kDa actin-binding protein was identified by tryptic peptide microsequencing as heat shock protein-70 kDa (HSC70); this identification was confirmed by Western blotting with anti-HSC70 antibody, and binding of the protein to ATP-agarose. A doublet of 32/34-kDa proteins coeluted with parasite HSC70 from the F-actin and ATP-agarose columns; a complex of these three proteins was also observed by gel filtration chromatography Highly enriched fractions containing the Plasmodium HSC70/32/34 complex inhibited the polymerization of rabbit skeletal muscle actin, in vitro. This capping activity was calcium-independent, and abrogated by phosphatidylinositol 4,5-bisphosphate. The average length of the actin filaments polymerized in presence of the HSC70/32/34-kDa complex was significantly shorter than in the absence of the complex, consistent with a capping activity. The capping or uncapping of actin filament ends by the HSC70/32/34-kDa complex during invasion could provide a mechanism for localized actin filament growth and movement of the parasite into the host cell.  相似文献   

15.
Sphingosine-1-phosphate (Sph-1-P), the initial product of sphingosine (Sph) catabolism, has been reported to inhibit motility of mouse melanoma B16/F1 and other types of cells at very low concentrations (10-100 nM). Sph-1-P (100 nM-1 microM) inhibited pseudopodium formation by blocking polymerization and reorganization of actin filaments in newly formed pseudopodia, and reduced F-actin by approximately 25% in F1 cells. A pyrene-labeled actin nucleation assay revealed that Sph-1-P (100 nM) inhibits actin nucleation mediated by F1 cell plasma membranes. These results suggest that Sph-1-P interacts with molecules associated with actin nucleation to inhibit reorganization of pseudopodium formation and cell motility.  相似文献   

16.
During inflammation, hydrogen peroxide, produced by polymorphonuclear leukocytes, provokes cell death mainly by disarranging filamentous (polymerized) actin (F-actin). To show the molecular mechanism(s) by which hydrogen peroxide could alter actin dynamics, we analyzed the ability of H2O2-treated actin samples to polymerize as well as the suitability of actin polymers (from oxidized monomers) to interact with cross-linking proteins. H2O2-treated monomeric (globular) actin (G-actin) shows an altered time course of polymerization. The increase in the lag phase and the lowering in both the polymerization rate and the polymerization extent have been evidenced. Furthermore, steady-state actin polymers, from oxidized monomers, are more fragmented than control polymers. This seems to be ascribable to the enhanced fragility of oxidized filaments rather than to the increase in the nucleation activity, which markedly falls. These facts; along with the unsuitability of actin polymers from oxidized monomers to interact with both filamin and alpha-actinin, suggest that hydrogen peroxide influences actin dynamics mainly by changing the F-actin structure. H2O2, via the oxidation of actin thiols (in particular, the sulfhydryl group of Cys-374), likely alters the actin C-terminus, influencing both subunit/subunit interactions and the spatial structure of the binding sites for cross-linking proteins in F-actin. We suggest that most of the effects of hydrogen peroxide on actin could be explained in the light of the "structural connectivity," demonstrated previously in actin.  相似文献   

17.
The actin-based motility of Listeria monocytogenes requires the addition of actin monomers to the barbed or plus ends of actin filaments. Immunofluorescence micrographs have demonstrated that gelsolin, a protein that both caps barbed ends and severs actin filaments, is concentrated directly behind motile bacteria at the junction between the actin filament rocket tail and the bacterium. In contrast, CapG, a protein that strictly caps actin filaments, fails to localize near intracellular Listeria. To explore the effect of increasing concentrations of gelsolin on bacterial motility, NIH 3T3 fibroblasts stably transfected with gelsolin cDNA were infected with Listeria. The C5 cell line containing 2.25 times control levels of gelsolin supported significantly higher velocities of bacterial movement than did control fibroblasts (mean +/- standard error of the mean, 0.09 +/- 0.003 micro(m)/s [n = 176] versus 0.05 +/- 0.003 micro(m)/s [n = 65]). The rate of disassembly of the Listeria-induced actin filament rocket tail was found to be independent of gelsolin content. Therefore, if increases in gelsolin content result in increases in Listeria-induced rocket tail assembly rates, a positive correlation between gelsolin content and tail length would be expected. BODIPY-phalloidin staining of four different stably transfected NIH 3T3 fibroblast cell lines confirmed this expectation (r = 0.92). Rocket tails were significantly longer in cells with a high gelsolin content. Microinjection of gelsolin 1/2 (consisting of the amino-terminal half of native gelsolin) also increased bacterial velocity by more than 2.2 times. Microinjection of CapG had no effect on bacterial movement. Cultured skin fibroblasts derived from gelsolin-null mice were capable of supporting intracellular Listeria motility at velocities comparable to those supported by wild-type skin fibroblasts. These experiments demonstrated that the surface of Listeria contains a polymerization zone that can block the barbed-end-capping activity of both gelsolin and CapG. The ability of Listeria to uncap actin filaments combined with the severing activity of gelsolin can accelerate actin-based motility. However, gelsolin is not absolutely required for the actin-based intracellular movement of Listeria because its function can be replaced by other actin regulatory proteins in gelsolin-null cells, demonstrating the functional redundancy of the actin system.  相似文献   

18.
Gelsolin is a protein that severs and caps actin filaments. The two activities are located in the N-terminal half of the gelsolin molecules. Severing and subsequent capping requires the binding of domains 2 and 3 (S2-3) to the side of the filaments to position the N-terminal domain 1 (S1) at the barbed end of actin (actin subdomains 1 and 3). The results provide a structural basis for the gelsolin capping mechanism. The effects of a synthetic peptide derived from the sequence of a binding site located in gelsolin S2 on actin properties have been studied. CD and IR spectra indicate that this peptide presented a secondary structure in solution which would be similar to that expected for the native full length gelsolin molecule. The binding of the synthetic peptide induces conformational changes in actin subdomain 1 and actin oligomerization. An increase in the polymerization rate was observed, which could be attributed to a nucleation kinetics effect. The combined effects of two gelsolin fragments, the synthetic peptide derived from an S2 sequence and the purified segment 1 (S1), were also investigated as a molecule model. The two fragments induced nucleation enhancement and inhibited actin depolymerization, two characteristic properties of capping. In conclusion, for the first time it is reported that the binding of a small synthetic fragment is sufficient to promote efficient capping by S1 at the barbed end of actin filaments.  相似文献   

19.
Actin cleaved by the protease from Escherichia coli A2 strain between Gly42 and Val43 (ECP-actin) is no longer polymerizable when it contains Ca2+ as a tightly bound cation, but polymerizes when Mg2+ is bound. We have investigated the interactions of gelsolin with this actin with regard to conformational changes in the actin molecule induced by the binding of gelsolin. ECP-(Ca)actin interacts with gelsolin in a manner similar to that in which it reacts with intact actin, and forms a stoichiometric 2:1 complex. Despite the nonpolymerizability of ECP-(Ca)actin, this complex can act as a nucleus for the polymerization of intact actin, thus indicating that upon interaction with gelsolin, ECP-(Ca)actin undergoes a conformational change that enables its interaction with another actin monomer. By gel filtration and fluorometry it was shown that the binding of at least one of the ECP-cleaved actins to gelsolin is considerably weaker than of intact actin, suggesting that conformational changes in subdomain 2 of actin monomer may directly or allosterically affect actin-gelsolin interactions. On the other hand, interaction with gelsolin changes the conformation of actin within the DNase I-binding loop, as indicated by inhibition of limited proteolysis of actin by ECP and subtilisin. Cross-linking experiments with gelsolin-nucleated actin filaments using N,N-phenylene-bismaleimide (which cross-links adjacent actin monomers between Cys374 and Lys191) reveal that gelsolin causes a significant increase in the yield of the 115-kDa cross-linking product, confirming the evidence that gelsolin stabilizes or changes the conformation of the C-terminal region of the actin molecule, and these changes are propagated from the capped end along the filament. These results allow us to conclude that nucleation of actin polymerization by gelsolin is promoted by conformational changes within subdomain 2 and at the C-terminus of the actin monomer.  相似文献   

20.
Alterations in vascular cell shape and motility occur during developmental processes and in response to injury. Similarly, during tumor vascularization and atherogenesis, endothelial and smooth muscle cells undergo motile and proliferative responses to extracellular cues. Recent inroads into our understanding of signal transduction have identified several candidate pathways by which the extracellular matrix- and growth factor-mediated stimulation of vascular cell motility may be mediated. The multiple and divergent extracellular stimuli that stimulate vascular motile responses may converge on the cytoskeleton via a family of ras-related GTPases. Biochemical analyses as well as examination of cytoskeletal dynamics in vivo indicate that actin polymerization at the forward aspects of spreading cytoplasm is capable of driving forward protrusion formation in the absence of a conventional actin motor. Actin polymerization at the plasma membrane of leading lamellae may be mediated both by de novo nucleation of actin filaments and the generation of free filament ends by uncapping the barbed ends of existing actin filaments. This review summarizes the most recent findings in extracellular-cytoskeletal-signal transduction, therein, providing a framework to explain the remarkable remodeling seen in the vasculature during developmental and disease-related processes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号