共查询到15条相似文献,搜索用时 62 毫秒
1.
2.
3.
用俄歇电子能谱(AES)研究了高真空下,环境温度对铀铌合金真空氧化膜的影响。当温度高于603K时,氧化膜表面结构发生明显改变,表面主要由铀碳化合物、金属态的U和Nb组成。利用Ar^ 溅射铀铌合金真空热氧化膜进行深度分布分析,发现在热氧化膜的表面氧含量很小,而在热氧化膜的内部有氧增多的现象。 相似文献
4.
5.
以光纤光度计为检测仪,百里酚为显色剂,用分光光度法测定了铀及铀铌合金中的氮含量。在次氯酸钠溶液中w(Cl)=0.1%~0.14%的条件下,氨与酚形成的络合物最大吸收波长为660nm,方法检测限为20μg/g,测量相对标准偏差小于15%,方法回收率为88%~106%。经比对,该法测定结果与传统分光光度法基本一致。 相似文献
6.
O钝化对铀铌合金电化学腐蚀行为的影响 总被引:2,自引:0,他引:2
采用电化学方法研究了铀铌合金经CO(0.3MPa)钝化前后的电化学耐蚀性能,并用X射线光电子能谱(XPS)分析了铀铌合金经CO钝化后表面层的组成。研究结果表明:铀铌合金经CO钝化后表面生成了致密的钝化膜,这层钝化膜增大了腐蚀过程的阳极阻力,提高了铀铌合金的电化学耐蚀性能。 相似文献
7.
8.
采用离子选择电极分析技术测量了铀及铀铌合金中的微量氮,确定了ISA作为离子强度调节剂缓冲溶液时该方法的最佳试验条件.结果表明,温度控制在(25±1)℃、pH=4.5~5.0,铵离子电极检测下限为0.03mg/L,回收率为85%~98%,方法的测量相对标准偏差小于15%;在氮含量为30~80 μg/g范围内,测氮结果与传... 相似文献
9.
用压力-体积-温度(P—V—T)法研究了铀和铀铌合金与氢气反应的动力学过程。研究结果表明,加热预处理可以缩短铀和铀铌合金试样与氢气反应的孕育期;加热预处理温度(600-700℃)对铀和铀铌合金与氢气反应的影响不同。加热预处理温度为600℃、反应温度为200℃时,低碳铀、高碳铀、铀-7%铌合金和铀-3.5%铌合金与氢气反应的活性依次增强。因此,高碳铀和铀铌合金比低碳铀更易于与氢气反应。 相似文献
10.
考察了准确测定铀铌合金中氢的影响因素。样品的形态对氢的测定结果影响较大,屑样中的氢量比柱样中氢量大很多,因此,柱样中的氢量更接近真实值。铀铌合金中的氢量主要来自表面吸附。真空热抽取法和惰气熔融法的测氢结果基本一致,真空热抽取法的相对标准偏差(RSD)≤28%。 相似文献
11.
12.
针对连续能谱X射线厚度测量中的合金补偿问题,利用能谱等效思想,根据单能射线下合金补偿系数与射线能量之间及连续能谱射线下合金补偿系数与材料厚度之间均存在单值对应关系,以合金补偿系数为参考,将连续能谱射线下的合金补偿问题转化为单能射线下的合金补偿问题。提出了系统标定、厚度标定、单能标定及能量等效的具体方案。利用蒙特卡罗程序建立了适用于X射线厚度测量的仿真模型,对能谱等效结果进行了验证。结果表明,30种不锈钢材料板按能谱等效结果进行合金补偿后,厚度测量相对误差90%以上小于0.1%,表明基于能谱等效思想的合金补偿方法可行性高、适用性广。该方法中的能谱等效结果对连续能谱射线硬化研究有参考意义。 相似文献
13.
金属铀在CO气氛中表面反应的X射线光电子能谱研究 总被引:9,自引:0,他引:9
用X射线光电子能谱分析研究了金属铀在CO气氛中25℃和200℃时的表面反应,CO在金属铀表层上的吸附层导致了U4f峰向低结合能方向位移,表层氧化物中氧含量减少,O/U比值随CO吸附量的增加而减少,研究结果表明CO气氛可抑制金属铀表面的进一步氧化。 相似文献
14.
用35MeV/u的Ar离子室温下辐照多层堆叠的半晶质的聚酯(PET)膜,采用X射线衍射技术和X射线光电子谱仪分析研究了辐照引起的表面结构和组分的变化。结果表明:Ar离子辐照PET膜引起了明显的非晶化转变和化学键断裂、断裂主要发生在甲氧基和羰基功能团上,并使这两个功能团中的C和O的比分相对减少。非晶化效应和化学键断裂同时依赖于离子的照射剂量和离子在样品表面的电子能量损失、剂量越高,表面电子能量损失越大,效应就明显。同时定性地讨论了结果。 相似文献
15.
本文对U-Mo合金与Zr-4合金的扩散层性质进行了研究。三明治结构的U-Mo/Zr-4扩散偶在760~800℃下包覆热轧后,保温10~66 h。采用扫描电子显微镜(SEM)分析了扩散层的形貌和厚度,采用波谱仪(WDS)分析了各元素在扩散区内的分布情况,采用X射线衍射仪(XRD)测定了扩散层的相组成。分析结果表明,即使在800℃的高温下,U-Mo/Zr-4的扩散程度依然微弱,表现出良好的相容性;U-Mo/Zr的扩散层中间出现裂纹,裂纹两侧的扩散层相组成明显不同,靠近U-Mo侧为富Mo相,其主要是以化合物ZrMo_2为基的固溶体;靠近Zr-4侧的为富Zr相,其主要是以化合物UZr_2为基的固溶体;裂纹认为是由U和Zr不等量的原子交换所造成的。 相似文献