首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 296 毫秒
1.
We present broadband antireflective silicon (Si) nanostructures with hydrophobicity using a spin-coated Ag ink and by subsequent metal-assisted chemical etching (MaCE). Improved understanding of MaCE, by conducting parametric studies on optical properties, reveals a design guideline to achieve considerably low solar-weighted reflectance (SWR) in the desired wavelength ranges. The resulting Si nanostructures show extremely low SWR (1.96%) and angle-dependent SWR (<4.0% in the range of 0° to 60°) compared to that of bulk Si (SWR, 35.91%; angle-dependent SWR, 37.11%) in the wavelength range of 300 to 1,100 nm. Relatively large contact angle (approximately 102°) provides a self-cleaning capability on the solar cell surface.  相似文献   

2.
Silicon (Si) nanostructures that exhibit a significantly low reflectance in ultraviolet (UV) and visible light wavelength regions are fabricated using a hydrogen etching process. The fabricated Si nanostructures have aperiodic subwavelength structures with pyramid-like morphologies. The detailed morphologies of the nanostructures can be controlled by changing the etching condition. The nanostructured Si exhibited much more reduced reflectance than a flat Si surface: an average reflectance of the nanostructured Si was approximately 6.8% in visible light region and a slight high reflectance of approximately 17% in UV region. The reflectance was further reduced in both UV and visible light region through the deposition of a poly(dimethylsiloxane) layer with a rough surface on the Si nanostructure: the reflectance can be decreased down to 2.5%. The enhancement of the antireflection properties was analyzed with a finite difference time domain simulation method.  相似文献   

3.
光学参数是评价汽车贴膜质量的一项重要指标。本实验主要以市面上部分中高档次的汽车侧窗贴膜为样品,使用带积分球检测器的紫外/可见光/红外分光光度计得到其200~2500 nm的透射和反射光谱,通过计算得到其可见光透射比、反射比,太阳光直接透射比、反射比,紫外线透射比。以此为依据分析现市面上主要中高档侧窗汽车贴膜在紫外线阻隔、安全性和隔热等方面的性能。结果表明:所有样品的紫外阻隔率〉99%,有57%的样品可见光透射比〉70%,太阳光直接透射比均偏低,说明所采集的样品在防紫外、安全性、隔热性方面性能在标准以上。  相似文献   

4.
We report the fabrication of broadband antireflective silicon (Si) nanostructures fabricated using spin-coated silver (Ag) nanoparticles as an etch mask followed by inductively coupled plasma (ICP) etching process. This fabrication technique is a simple, fast, cost-effective, and high-throughput method, making it highly suitable for mass production. Prior to the fabrication of Si nanostructures, theoretical investigations were carried out using a rigorous coupled-wave analysis method in order to determine the effects of variations in the geometrical features of Si nanostructures to obtain antireflection over a broad wavelength range. The Ag ink ratio and ICP etching conditions, which can affect the distribution, distance between the adjacent nanostructures, and height of the resulting Si nanostructures, were carefully adjusted to determine the optimal experimental conditions for obtaining desirable Si nanostructures for practical applications. The Si nanostructures fabricated using the optimal experimental conditions showed a very low average reflectance of 8.3%, which is much lower than that of bulk Si (36.8%), as well as a very low reflectance for a wide range of incident angles and different polarizations over a broad wavelength range of 300 to 1,100 nm. These results indicate that the fabrication technique is highly beneficial to produce antireflective structures for Si-based device applications requiring low light reflection.  相似文献   

5.
Li X  Li J  Chen T  Tay BK  Wang J  Yu H 《Nanoscale research letters》2010,5(11):1721-1726
Periodically aligned Si nanopillar (PASiNP) arrays were fabricated on Si substrate via a silver-catalyzed chemical etching process using the diameter-reduced polystyrene spheres as mask. The typical sub-wavelength structure of PASiNP arrays had excellent antireflection property with a low reflection loss of 2.84% for incident light within the wavelength range of 200–1,000 nm. The solar cell incorporated with the PASiNP arrays exhibited a power conversion efficiency (PCE) of ~9.24% with a short circuit current density (J SC ) of ~29.5 mA/cm2 without using any extra surface passivation technique. The high PCE of PASiNP array-based solar cell was attributed to the excellent antireflection property of the special periodical Si nanostructure.  相似文献   

6.
Phase separation and dewetting processes of blend thin films of polystyrene (PS) and poly(vinyl methyl ether) (PVME) in two phase region have been studied in a wide film thickness range from 65 μm to 42 nm (∼2.5Rg, Rg being radius of gyration of a polymer) using optical microscope (OM), atomic force microscope (AFM) and small-angle light scattering (LS). It was found that both phase separation and dewetting processes depend on the film thickness and were classified into four thickness regions. In the first region above ∼15 μm the spinodal decomposition (SD) type phase separation occurs in a similar manner to bulk and no dewetting is observed. This region can be regarded as bulk. In the second region between ∼15 and ∼1 μm, the SD type phase separation proceeds in the early stage while the characteristic wavelength of the SD decreases with the film thickness. In the late stage dewetting is induced by the phase separation. In the third region between ∼1 μm and ∼200 nm the dewetting is observed even in the early stage. The dewetting morphology is very irregular and no definite characteristic wavelength is observed. It is expected that the irregular morphology is induced by mixing up the characteristic wavelengths of the phase separation and the dewetting. In the fourth region below ∼200 nm the dewetting occurs after a long incubation time with a characteristic wavelength, which decreases with the film thickness. It is considered that the layered structure is formed in the thin film during the incubation period and triggers the dewetting through the capillary fluctuation mechanism or the composition fluctuation one.  相似文献   

7.
Antimony doped Tin Oxide (ATO) hollow submicron spheres were synthesized with a carbon ball template using the hydrothermal method, and compared to commercial nano-ATOs that differed in particle size. To study the thermal insulation performance and the mechanism of different ATOs, their morphology, crystalline structure and microstructure were examined using XRD, SEM and HRTEM. Meanwhile, the optical and thermal characteristics of the different ATOs, including absorption, reflectance, thermal conductivity, infrared emissivity (8–14 μm), and specific heat capacity, were also measured. Silicone acrylic emulsion coatings containing different dosages of ATO were then prepared, and their UV–Vis–NIR transmittance and solar heat shielding performances were tested. ATO hollow submicron spheres showed a thermal insulation performance comparable to that of nano-ATO, but their main respective thermal insulation mechanism was different. ATO hollow submicron spheres primarily relied on better particle dispersion, lower thermal conductivity, higher specific heat capacity and higher infrared emissivity. The 50 nm ATO absorbed the least solar heat but reflected the most light, while 100 nm ATO showed the opposite behavior. Both nano-ATOs had better transmittance in the visible light range but relatively low transmittance in the ultraviolet and infrared range. The results of this study indicate that ATO hollow submicron spheres are promising materials equivalent to nano-spheres that can be applied as a coating for energy conservation.  相似文献   

8.
《Ceramics International》2017,43(14):11015-11022
Bi-based chalcogenides, in the form of thin crystalline films, were deposited at different thicknesses onto highly cleaned glass slides with the aid of vacuum thermal evaporation technique. The influence of thermal annealing on the optical properties of Bi2Te3-Bi2Se3 films at different thicknesses is investigated in this work. Wavelength dependence of the optical transmittance and reflectance was recorded, for the as-prepared and the annealed films, in the wavelength range from 350 to 2700 nm using a double beam spectrophotometer. Fundamental optical properties such as absorption coefficient and energy band gap were derived based on the measured spectra and film's thickness. We demonstrate in the present work that the synergy of annealing and thickness reduction can be exploited for light transmittance enhancements, and consequently for optoelectronic applications including transparent conductive electrodes.  相似文献   

9.
High reflectance thermal barrier coatings consisting of 7% Yittria-Stabilized Zirconia (7YSZ) and Al2O3 were deposited by co-evaporation using electron beam physical vapor deposition (EB-PVD). Multilayer 7YSZ and Al2O3 coatings with fixed layer spacing showed a 73% infrared reflectance maxima at 1.85 μm wavelength. The variable 7YSZ and Al2O3 multilayer coatings showed an increase in reflection spectrum from 1 to 2.75 μm. Preliminary results suggest that coating reflectance can be tailored to achieve increased reflectance over a desired wavelength range by controlling the thickness of the individual layers. In addition, microstructural enhancements were also used to produce low thermal conductive and high hemispherical reflective thermal barrier coatings (TBCs) in which the coating flux was periodically interrupted creating modulated strain fields within the TBC. TBC showed no macrostructural differences in the grain size or faceted surface morphology at low magnification as compared with standard TBC. The residual stress state was determined to be compressive in all of the TBC samples, and was found to decrease with increasing number of modulations. The average thermal conductivity was shown to decrease approximately 30% from 1.8 to 1.2 W/m-K for the 20-layer monolithic TBC after 2 h of testing at 1316°C. Monolithic modulated TBC also resulted in a 28% increase in the hemispherical reflectance, and increased with increasing total number of modulations.  相似文献   

10.
This study fabricates the optically active uniform SiGe/Si multiple quantum well (MQW) nanorod and nanodot arrays from the Si0.4Ge0.6/Si MQWs using nanosphere lithography (NSL) combined with the reactive ion etching (RIE) process. Compared to the as-grown sample, we observe an obvious blueshift in photoluminescence (PL) spectra for the SiGe/Si MQW nanorod and nanodot arrays, which can be attributed to the transition of PL emission from the upper multiple quantum dot-like SiGe layers to the lower MQWs. A possible mechanism associated with carrier localization is also proposed for the PL enhancement. In addition, the SiGe/Si MQW nanorod arrays are shown to exhibit excellent antireflective characteristics over a wide wavelength range. These results indicate that SiGe/Si MQW nanorod arrays fabricated using NSL combined with RIE would be potentially useful as an optoelectronic material operating in the telecommunication range.  相似文献   

11.
《Ceramics International》2016,42(4):5136-5140
Anti-reflection coatings (ARCs) are widely used in various optical and optoelectronic devices to minimize the reflection of light. In this study, we demonstrated the fabrication of ZnO nanopyramidal structures on Si substrate via low-temperature electrochemical deposition. We also investigated the anti-reflection (AR) properties of these nanostructures compared with nanorods and planar ZnO texture on Si substrates. We changed the growth conditions, namely, growth temperature and applied current density, to modify the shape of the ZnO nanorod tips. Nanopyramidal structures with continuously varying refractive index profiles in a single layer were obtained. Reflectance spectra show that the nanopyramid-based texture reduced the reflection of light in a broad spectral range from 380 nm to 1000 nm and is much more effective than nanorod and planar textures. For nanopyramid arrays (NPAs) with average tip diameter of 20 nm, we achieved a 6.5% reflectance over a wide range of wavelengths, which is superior to an optimized single-layer ARC such as SiO2 or TiO2. These textured ZnO ARCs may be applied to a wide variety of photovoltaic devices and other anti-reflection applications with large areas because of their low temperature, fast growth, and simple fabrication.  相似文献   

12.
The room temperature directional-hemispherical reflectance and transmittance spectra of free-standing atmospheric plasma-sprayed BaZrO3 coatings with different thicknesses were measured in the wavelength range of 0.8–15.0 μm, and the absorption coefficient and scattering coefficient as a function of wavelength were extracted using the modified four-flux model. Results showed that BaZrO3 is a high scattering, low absorption material at the wavelength <6 μm, where turbine engine thermal radiation is most concentrated. The absorption coefficient of BaZrO3 starts to increase rapidly at wavelength of 6 μm, indicating that BaZrO3 is high absorbing and opaque in the long wavelength range. A pronounced absorption peak occurs at a wavelength of 7 μm, and is associated with a BaCO3 coating impurity. The scattering coefficient of BaZrO3 decreases with the increase of wavelength in the whole measured wavelength range, caused by the decrease of the relative size of the scattering center compared with the wavelength.  相似文献   

13.
The absolute diffuse reflectance factors of white standard reference materials have been measured in d/0 geometry (Sharp–Little method) over the visible spectral range using a silicon-photodiode array. This method reduces the measuring time to a few seconds to obtain complete spectral reflectance factor data from 380–780 nm in the visible range. The effects of the openings and the wall thickness at the sample port onto the spectral reflectance factors were considered to get more accurate results. The precision of the diffuse reflectance factors in our system was 0.1% in the wavelength region longer than 550 nm and 0.4% in that shorter than 400 nm. We have obtained the absolute diffuse reflectance factors in the visible range of two kinds of barium sulfate, and of pressed polytetrafluoroethylene (PTFE) at three different densities. © 1997 John Wiley & Sons, Inc. Col Res Appl, 22, 275–279, 1997  相似文献   

14.
In this report, self-organized GaN nanodots have been grown on Si (111) by droplet epitaxy method, and their density can be controlled from 1.1 × 1010 to 1.1 × 1011 cm-2 by various growth parameters, such as substrate temperatures for Ga droplet formation, the pre-nitridation treatment of Si substrate, the nitridation duration for GaN crystallization, and in situ annealing after GaN formation. Based on the characterization of in situ RHEED, we can observe the surface condition of Si and the formation of GaN nanodots on Si. The surface nitridaiton treatment at 600°C provides a-SiNx layer which makes higher density of GaN nanodots. Crystal GaN nanodots can be observed by the HRTEM. The surface composition of GaN nanodots can be analyzed by SPEM and μ-XPS with a synchrotron x-ray source. We can find GaN nanodots form by droplet epitaxy and then in situ annealing make higher-degree nitridation of GaN nanodots.  相似文献   

15.
《Ceramics International》2016,42(4):5271-5277
We present here the results from a systematic investigation on the growth kinetics and surface properties of Al-doped ZnO (AZO) nanowires synthesized on (0 0 1)Si substrates under different hydrothermal conditions. The as-synthesized vertical AZO nanowires exhibited a hydrophilic characteristic and their crystal structures were determined to be perfectly single crystalline with the axis of the wire parallel to the [0 0 0 1] direction. TEM and EDS results revealed that the as-synthesized AZO nanowires have tapered tips, and the Al-doped concentration in the AZO nanowires was about 1.6 at%. After a series of SEM examinations, the average length of AZO nanowires synthesized at each temperature studied was found to follow a linear relationship with the reaction time, indicating that the hydrothermal growth of AZO nanowires was a reaction-controlled process. The activation energy for linear growth of AZO nanowires on Si substrate, as obtained from an Arrhenius plot, was found to be about 46 kJ/mol. From UV–vis spectroscopic measurements, it was found that the Si substrate coated with vertically-aligned AZO nanowire arrays exhibited remarkably reduced reflectance (10–12%) over a wide range of visible wavelengths (400–800 nm) and angles of light incidence (8–60°). The good broadband and omnidirectional antireflection characteristics can be attributed to the light trapping effect and the graded refractive index resulting from the tapered AZO nanowire structures.  相似文献   

16.
The diffuse reflectance factor for different colored rose petals is measured as a function of wavelength using a high resolution optical spectrometer. The tristimulus values, the CIE chromaticity coordinates, the dominant wavelength and purity, the CIE whiteness index, the tint index, the CIE 1976 LAB coordinates, as well as CIELAB hue‐angle and chroma are reported. The data on diffuse reflectance factor are presented in the 390?800 nm range at intervals of 10 nm. Using the data, one can generate the perceived color of the roses and the color coordinates in different illuminating light sources and environments. The present data will be useful for the color characterization of flowers, realistic rendering of flowers in computer graphics, color photography, and in the development of filters for color photography. © 2010 Wiley Periodicals, Inc. Col Res Appl, 2011  相似文献   

17.
In this study, the deposition parameters of the SU8 2000.5 negative photoresists have been investigated and optimized for the photolithographic technique. Then, applied the inductive coupled plasma reactive ion etching (ICP RIE) to produce V-shaped groove diffraction grating on a silicon substrate. Spin coater (speed: 1000 rpm) was used to coat the photoresist over the Si substrate. The observed photoresist film thickness was measured by ellipsometry and found to be 800 nm. Interestingly, the film exhibited some stability with increasing the spin speed. The thermogravimetric analysis was used to optimize the baking temperature which was found to be ~105 °C. Contrast curves were obtained experimentally and used to optimize the exposure energy along with the images obtained from the field emission scanning electron microscopy (FESEM). The optimized energy fluence was found to be 17 mJ/cm2. It was interesting to observe that the thickness of the photoresists film was increasing with the elevation of the exposure energy fluence. The FESEM images were used to optimize the ICP RIE etching process and the best etching conditions for the Si substrate were ICP power: 150 W, bias power: 100 W, and SF6 gas flow rate: 32 SCCM (standard cubic centimeters per minute), O2 gas flow: 8 SCCM, and Ar gas flow of 8 SCCM. It is worth to mention that well-defined V-shaped grooves were observed with a depth of 2 μm under the same experimental conditions.  相似文献   

18.
《Ceramics International》2021,47(22):31180-31186
In this work, flaky aluminum was coated with bismuth oxide to obtain low reflection in near-infrared range and low emission in long-wave infrared stealth material. The composites were prepared through coprecipitation method, characterized by scanning electron microscopy (SEM) and X-ray diffraction (XRD), and measured by ultraviolet spectrophotometer and dual band infrared emissometer. The morphology and microstructure show that the flaky aluminum was coated by bismuth oxide nanoparticles. The optimal reaction temperature was 50 °C, and the optimized amount of Al was 20 wt%. Meanwhile, the infrared emissivity in 8–14 μm infrared waveband range was 0.462 and the reflectivity was 39.1% at wavelength of 1.064 μm. In addition, it could also achieve good thermal insulation in a thinner thickness. When the temperature of heating platform reached 100 °C, the temperature of the disk with 0.30 mm thickness was 26.9 °C which was only 2.7 °C higher than that of the disk with 0.94 mm thickness. It may shed light on a new material design orientation to obtain high performance infrared and laser compatible stealth materials.  相似文献   

19.
The aim of this study was to investigate the aluminum-incorporated mesoporous silicate (Al-MPS) as a thermal catalyst for the destruction of low density polyethylene (LDPE). Various Al-MPS (Si/Al molar ratios = 117.6, 58.8, 39.2 and 29.4) materials were successfully synthesized without any structural damage. With regard to the X-ray diffraction (XRD) pattern, the main peak of 2θ = 64.0 in Al2O3 did not show until the incorporation of Si/Al = 58.8. This result implies the aluminum ions were stably substituted into the silicon site of the mesoporous framework. The hexagonal straight pore size increased to about 8.0 nm in Al (Si/Al = 58.8)-MPS, but then decreased in the range of 3.0–5.0 nm in Al (Si/Al = 29.4)-MPS. In relation to the amount of incorporated aluminum, the Al-MPS absorbed many pyridine molecules, implying the acidities on the external surfaces up to Si/Al = 58.8, but this amount decreased somewhat above a Si/Al ratio of 39.2. The catalytic decomposition of LDPE was enhanced in Al (Si/Al = 58.8)-MPS and particularly, the selectivity to light hydrocarbons below C4 reached 43%.  相似文献   

20.
Nitrogen-doped diamond has been under investigation for its low effective work function, which is due to the negative electron affinity (NEA) produced after surface hydrogen termination. Diamond films grown by chemical vapor deposition (CVD) have been reported to exhibit visible light induced electron emission and low temperature thermionic emission. The physical mechanism and material-related properties that enable this combination of electron emission are the focus of this research. In this work the electron emission spectra of nitrogen-doped, hydrogen-terminated diamond films are measured, at elevated temperatures, with wavelength selected illumination from 340 nm to 450 nm. Through analysis of the spectroscopy results, we argue that for nitrogen-doped diamond films on metallic substrates, photo-induced electron generation at visible wavelengths involves both the ultra-nanocrystalline diamond and the interface between the diamond film and metal substrate. Moreover, the results suggest that the quality of the metal–diamond interface can substantially impact the threshold of the sub-bandgap photo-induced emission.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号