首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A nuclear track etched polycarbonate membrane filter with numerous cylindrical nanopores was applied as a nanoporous template for growing metallic nanowires. Nickel, cobalt, and iron nanowires were electrodeposited into the cylindrical nanopores. Cathodic polarization curves were measured to determine an optimum condition for growing nanowires. The shape of nanowires was observed using scanning electron microscope (SEM) and the crystal structure was analyzed using transmission electron microscopy (TEM). Diameter and length of nanowires corresponded to those of nanopores and each nanowire was composed of a single crystal. Anodized aluminum oxide films were also fabricated as a novel nanoporous template. The pore length and diameter was controlled changing anodizing conditions. Ordering behavior of nanopores array in an anodized aluminum oxide film was also investigated to make a novel nanoporous template with a highly ordered honeycomb array of nanopores.  相似文献   

2.
We report the fabrication and characterization of uniformly sized nanopore arrays, integrated into an optical detection system for high-throughput DNA sequencing applications. Nanopore arrays were fabricated using focused ion beam milling, followed by?TiO(2) coating using atomic layer deposition. The?TiO(2) layer decreases the initial pore diameter down to the sub-10?nm range, compatible with the requirements for nanopore-based sequencing using optical readout. We find that the?TiO(2) layers produce a lower photoluminescence background as compared with the more widely used Al(2)O(3) coatings. The functionality of the nanopore array was demonstrated by the simultaneous optical detection of DNA-quantum dot conjugates, which were electro-kinetically driven through the nanopores. Our optical scheme employs total internal reflection fluorescence microscopy to illuminate a wide area of the?TiO(2)-coated membrane. A highly parallel system for observing DNA capture events in a uniformly sized 6?×?6 nanopore array was experimentally realized.  相似文献   

3.
We present a new biocompatible nanostructured microelectrode array for extracellular signal recording from electrogenic cells. Microfabrication techniques were combined with a template-assisted approach using nanoporous aluminum oxide to develop gold nanopillar electrodes. The nanopillars were approximately 300-400 nm high and had a diameter of 60 nm. Thus, they yielded a higher surface area of the electrodes resulting in a decreased impedance compared to planar electrodes. The interaction between the large-scale gold nanopillar arrays and cardiac muscle cells (HL-1) was investigated via focused ion beam milling. In the resulting cross-sections we observed a tight coupling between the HL-1 cells and the gold nanostructures. However, the cell membranes did not bend into the cleft between adjacent nanopillars due to the high pillar density. We performed extracellular potential recordings from HL-1 cells with the nanostructured microelectrode arrays. The maximal amplitudes recorded with the nanopillar electrodes were up to 100% higher than those recorded with planar gold electrodes. Increasing the aspect ratio of the gold nanopillars and changing the geometrical layout can further enhance the signal quality in the future.  相似文献   

4.
Asoh H  Iwata J  Ono S 《Nanotechnology》2012,23(21):215304
To fabricate ordered geometric patterns consisting of InP nanoporous structures, a photoresist mask with periodic opening arrays was prepared by sphere photolithography. The diameter and interval of the openings of the photoresist mask could be controlled independently by adjusting the diameter of silica spheres used as a lens and the exposure time. Through this resist mask with a two-dimensional (2D) hexagonal array of openings, the pore growth of InP during anodic etching was investigated. The isolated openings could act as initiation sites for the radial growth of pores, resulting in the formation of hexagonal geometric patterns based on Voronoi tessellation in 2D space. With further anodic etching, inside the substrate, the growth direction of the pores changed from radial to perpendicular relative to the substrate. Moreover, by removing domains consisting of nanopores by anisotropic chemical etching, the fabrication of InP microhole arrays with circular and triangular cross sections was also achieved.  相似文献   

5.
We report on the fabrication of periodic arrays of deep nanopores with high aspect ratios in crystalline silicon. The radii and pitches of the pores were defined in a chromium mask by means of deep UV scan and step technology. The pores were etched with a reactive ion etching process with SF(6), optimized for the formation of deep nanopores. We have realized structures with pitches between 440 and 750?nm, pore diameters between 310 and 515?nm, and depth to diameter aspect ratios up to 16. To the best of our knowledge, this is the highest aspect ratio ever reported for arrays of nanopores in silicon made with a reactive ion etching process. Our experimental results show that the etching rate of the nanopores is aspect-ratio-dependent, and is mostly influenced by the angular distribution of the etching ions. Furthermore we show both experimentally and theoretically that, for sub-micrometer structures, reducing the sidewall erosion is the best way to maximize the aspect ratio of the pores. Our structures have potential applications in chemical sensors, in the control of liquid wetting of surfaces, and as capacitors in high-frequency electronics. We demonstrate by means of optical reflectivity that our high-quality structures are very well suited as photonic crystals. Since the process studied is compatible with existing CMOS semiconductor fabrication, it allows for the incorporation of the etched arrays in silicon chips.  相似文献   

6.
We report integrated nanopore/microfluidic devices in which the unique combination of low pore density, conical nanopore membranes with microfluidic channels created addressable, localized high-field regions for electrophoretic and dielectrophoretic trapping of particles. A poly(ethylene terephthalate) track-etched membrane containing conical pores approximately 130 nm in diameter at the tip and approximately 1 microm in diameter at the base was used as an interconnect between two perpendicular poly(dimethylsiloxane) microfluidic channels. Integration of the nanopore membrane with microfluidic channels allowed for easy coupling of the electrical potentials and for directed transport of the analyte particles, 200 nm and 1 microm polystyrene microspheres and Caulobacter crescentus bacteria, to the trapping region. Square waves applied to the device generated electric field strengths up to 1.3 x 10(5) V/cm at the tips of the nanopores in the microchannel intersection. By varying the applied potentials from +/-10 to +/-100 V and exploring frequencies from dc to 100 kHz, we determined the contributions of electrophoretic and dielectrophoretic forces to the trapping and concentration process. These results suggest that tunable filter elements can be constructed in which the nanoporous elements provide a physical barrier and the applied ac field enhanced selectivity.  相似文献   

7.
Bolton J  Bailey TS  Rzayev J 《Nano letters》2011,11(3):998-1001
Asymmetric polystyrene-polylactide (PS-PLA) bottlebrush block copolymers have been shown to self-assemble into a cylindrical morphology with large domain spacings. PLA cylinders can be selectively etched out of the shear-aligned polymer monoliths to generate nanoporous materials with an average cylindrical pore diameter of 55 nm. The remaining bottlebrush backbone provides a functional, hydrophilic coating inside the nanopores. This methodology significantly expands the range of pore sizes attainable in block copolymer based nanoporous materials.  相似文献   

8.
Kuo CY  Lu SY 《Nanotechnology》2008,19(9):095705
We propose a highly ordered multi-scale nanostructure of TiO(2) for applications as an anode in dye-sensitized solar cells (DSSCs). The structure is composed of a TiO(2) blocking layer, a TiO(2) inverse opal main body, regularly arranged transport channels between contacting spherical voids of the TiO(2) inverse opal, and TiO(2) nanoparticles coated on the spherical surfaces of the voids. The ordered and continuous backbone of the inverse opal serves as the fast electron transport pathways while the regularly arranged transport channels enable easy transport of dye and electrolyte within the structure. A multi-cycle procedure was developed to enable fabrication of thick inverse opals and easy adjustment of the inverse opal thickness. An example structure was constructed, involving a blocking layer of 90?nm thickness, an inverse opal of 100?nm voids, transport channels of 30-50?nm openings, and nanoparticles 10-15?nm in size. An open-circuit voltage decay investigation showed a significant improvement in electron lifetime for the proposed multi-scale TiO(2) nanostructure based DSSC than that of a TiO(2) nanoparticle film based DSSC, revealing the superior electron recombination characteristic offered by the proposed TiO(2) nanostructure. The conversion efficiency of the DSSC assembled from such an anode structure can reach 4% with a short-circuit current density (J(sc)) of 8.7?mA?cm(-2) and open-circuit potential (V(oc)) of 0.76?V under AM 1.5 (100?mW?cm(-2)) illumination.  相似文献   

9.
Patterned nanoscale materials with controllable characteristic feature sizes and periodicity are of considerable interest in a wide range of fields, with various possible applications ranging from biomedical to nanoelectronic devices. Block-copolymer (BC)-based lithography is a powerful tool for the fabrication of uniform, densely spaced nanometer-scale features over large areas. Following this bottom-up approach, nanoporous polymeric films can be deposited on any type of substrate. The nanoporous periodic template can be transferred to the underlying substrate by dry anisotropic etching. Nevertheless the physical sizes of the polymeric mask represent an important limitation in the implementation of suitable lithographic protocols based on BC technology, since the diameter and the center-to-center distance of the pores cannot be varied independently in this class of materials. This problem could be overcome by combining block copolymer technology with atomic layer deposition (ALD): by means of BC-based lithography a nanoporous SiO2 template, with well-reproducible characteristic dimensions, can be fabricated and subsequently used as a backbone for the growth of perfectly conformal thin oxide films by ALD. In this work polystyrene-b-poly(methylmethacrylate) (PS-b-PMMA) BC and reactive ion etching are used to fabricate hexagonally packed 23 nm wide nanopores in a 50 nm thick SiO2 matrix. By ALD deposition of Al2O3 thin films onto the nanoporous SiO2 templates, nanostructured Al2O3 surfaces are obtained. By properly adjusting the thickness of the Al2O3 film the dimension of the pores in the oxide films is progressively reduced, with nanometer precision, from the original size down to complete filling of the pores, thus providing a simple and fast strategy for the fabrication of nanoporous Al2O3 surfaces with well-controllable feature size.  相似文献   

10.
Nanoporous poly(methyl silsesquioxane) (PMSSQ) film was prepared through the templating of an amphiphilic block copolymer, poly(styrene-4-vinyl pyridine) (PS-b-P4VP). The experimental and theoretical studies suggest that the intermolecular hydrogen bonding is existed between the PMSSQ precursor and PS-b-P4VP. The miscible hybrid and the narrow thermal decomposition of the PS-b-P4VP lead to nanopores in the prepared films from the results of TGA, AFM, and TEM. The effects of the loading ratio on the morphology and properties of the prepared nanoporous PMSSQ films were investigated. The TEM and AFM studies show that the uniform pore morphology with pore size 10-15 nm can be prepared from a modest porogen loading level for the optimum intermolecular hydrogen bonding. The refractive index and dielectric constant of the prepared nanoporous films decreases with an increase in PS-b-P4VP loading. On the other hand, the porosity increases with an increasing PS-b-P4VP loading. This study demonstrates a methodology to control pore morphology and properties of the nanoporous PMSSQ films through the templating of PS-b-P4VP.  相似文献   

11.
Nanoporous anodic aluminium oxide has been widely used for the development of various functional nanostructures. So far these self-organized pore structures could only be prepared within narrow processing conditions. Here we report a new oxalic-acid-based anodization process for long-range ordered alumina membranes. This process is a new generation of the so-called "hard anodization" approach that has been widely used in industry for high-speed fabrication of mechanically robust, very thick (>100 microm) and low-porosity alumina films since the 1960s. This hard anodization approach establishes a new self-ordering regime with interpore distances, (D(int))=200-300 nm, which have not been achieved by mild anodization processes so far. It offers substantial advantages over conventional anodization processes in terms of processing time, allowing 2,500-3,500% faster oxide growth with improved ordering of the nanopores. Perfectly ordered alumina membranes with high aspect ratios (>1,000) of uniform nanopores with periodically modulated diameters have been realized.  相似文献   

12.
We report a preliminary study of heat capacities of 4He confined in a nanoporous Gelsil glass that has nanopores of 2.5 nm in diameter. The heat capacity has a broad peak at a temperature far above the superfluid transition temperature obtained by torsional oscillator technique. The heat-capacity peak is attributed to formation of localized Bose-Einstein Condensates in the nanopores, in which the long-range superfluid coherence is destroyed by pore size distribution or random potential inherent to the porous glass.   相似文献   

13.
Solid-state nanopores are widely acknowledged as tools with which to study local structure in biological molecules. Individual molecules are forced through a nanopore, causing a characteristic change in an ionic current that depends on the molecules' local diameter and charge distribution. Here, the translocation measurements of long (~5-30 kilobases) single-stranded poly(U) and poly(A) molecules through nanopores ranging from 1.5 to 8 nm in diameter are presented. Individual molecules are found to be able to cause multiple levels of conductance blockade upon traversing the pore. By analyzing these conductance blockades and their relative incidence as a function of nanopore diameter, it is concluded that the smallest conductance blockades likely correspond to molecules that translocate through the pore in predominantly head-to-tail fashion. The larger conductance blockades are likely caused by molecules that arrive at the nanopore entrance with many strands simultaneously. These measurements constitute the first demonstration that single-stranded RNA can be captured in solid-state nanopores that are smaller than the diameter of double-stranded RNA. These results further the understanding of the conductance blockades caused by nucleic acids in solid-state nanopores, relevant for future applications, such as the direct determination of RNA secondary structure.  相似文献   

14.
In this article, the highly ordered polyaniline (PANI) nanotubes array was prepared by in situ polymerization using anodic aluminum oxide (AAO) as template. Polymerization of aniline was confined in the one-dimensional nanochannel of AAO template. The aniline was adsorbed and polymerized preferentially on the pore walls of template. The structure of PANI nanotubes array was characterized by Fourier transform infrared spectroscopy (FTIR), scanning electron microscope (SEM), transmission electron microscope (TEM), X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), selected area electron diffraction (SAED) and dynamic force microscope (DFM). The results show that PANI nanotubes are synthesized successfully in the nanopores of template, the diameter and length of PANI nanotubes are closed to the pore diameter and thickness of AAO template, respectively, the arrangement of PANI nanotubes is very regular and uniform, the crystal form of PANI nanotubes is hexagonal, different from pseudo-orthorhombic crystal form of PANI bulk sample, and cell parameters a and b are 0.5008 nm. The change of crystal form is due to the confinement of AAO template, which makes the molecular chain of PANI arrange more ordered.  相似文献   

15.
We present a fully elaborated process to grow arrays of metallic nanowires with controlled geometry and density, based on electrochemical filling of nanopores in track-etched templates. Nanowire growth is performed at room temperature, atmospheric pressure and is compatible with low cost fabrication and large surfaces. This technique offers an excellent control of the orientation, shape and nanowires density. It is applied to fabricate field emission arrays with a good control of the emission site density. We have prepared Co, Ni, Cu and Rh nanowires with a height of 3?μm, a diameter of 80?nm and a density of ~10(7)?cm(-2). The electron field emission measurements and total energy distributions show that the as-grown nanowires exhibit a complex behaviour, first with emission activation under high field, followed by unstable emission. A model taking into account the effect of an oxide layer covering the nanowire surface is developed to explain this particular field emission behaviour. Finally, we present an in situ cleaning procedure by ion bombardment that collectively removes this oxide layer, leading to a stable and reproducible emission behaviour. After treatment, the emission current density is ~1?mA?cm(-2) for a 30?V?μm(-1) applied electric field.  相似文献   

16.
This paper proposes a facile method to fabricate nanoporous microstructures by a photo-patternable SU-8 photoresist, to serve as a molecular filter in microfluidic systems. The fabrication process involves solvent-controlled nanoporous structure formation combined with standard photolithography steps for microstructure fabrication. The self-formed nanoporous morphology embedded inside the microstructure exhibits a sufficient mechanical strength and eliminates complex processes or protocols for integration/assembly of nano-?and microstructures. Field emission gun scanning electronic microscopy (FEGSEM) images showed the fabricated nanoporous morphologies with embedded nanogaps of about 6-10?nm. Atomic force microscopy (AFM) images also depicted a clear difference on the degree of porosity between the solvent-controlled SU-8 and the standard resist. Fluorescent dyes, namely Rhodamine-B and Rhodamine-6G, were employed to estimate the diffusivity of the fabricated SU-8 based nanofilter and demonstrated that the Rhodamine based fluorescent molecules can penetrate these nanosized filtration structures. The fabricated nanofilter was capable of providing a molecular weight cut-off range up to 70?kDa, estimated roughly for a molecule with a diameter of 6-10?nm. This simple process provides a novel way to integrate the nanofiltration capability into microstructures while maintaining a sufficient mechanical strength for molecular level filtration in lab-on-chip (LOC) systems.  相似文献   

17.
The porous siloxane thin film containing nanopores (<5.0 nm) can be effectively prepared by using an acyl mono/di-saccharide compound through porogen templated approach. The saccharide compound used as a porogen in this study effectively made pores in the siloxane thin film through their decomposition during hard curing process. The saccharide compounds seem to be assembled into adequate domain size in the silsesquioxane polymer via the intermolecular interaction between acyl groups of the porogens. The pore diameter of porous siloxane film prepared with 30 wt.% of benzoyl sucrose in spin-coating solution was 2.2 nm based on positronium annihilation lifetime spectroscopy. The saccharide derivatives templated nanoporous siloxane thin films showed the low dielectric property (k<2.5).  相似文献   

18.
Nanoporous structure of the cell walls of polycarbonate foams   总被引:1,自引:0,他引:1  
Using CO2 to prepare microcellular polycarbonate foams resulted in a pore diameter of 45 nm and a pore density of 108 cm?2 on the walls of microscale cells, which created nano/micro foams with an open cell structure. In this study, the craze nucleation theory and the bubble nucleation theory of foaming were combined to explain the mechanism of the foaming-induced nanopores (microvoids) on the cell walls. In the foaming process, the strain energy was developed in the cell walls by bubble nucleation and growth. With large strain energy, a nanoporous structure of the cell walls was formed by initiation of crazing. Because the foaming temperature affected the strain energy in the cell wall, the temperature became a key factor of forming microcellular structure as well as the nanopores on the cell walls. Our experimental results showed that the diameter and density of the nanopores were determined by the competitive movements between chain stretching and relaxation. Furthermore, certain solvents, such as acetone, were found to increase the nanopore density of the walls by exploiting the plasticization effect of the solvent on the reduction of surface tension and viscosity.  相似文献   

19.
A biohybrid system composed of neuronal cells and silicon-supported nanoporous membranes has been designed to facilitate control of the biochemical environment of neuronal networks with cellular resolution. The membranes may exhibit variable pore sizes and interpore distances and are interfaced to a microfluidic device. Different porosity parameters give rise to changes in the transconductance of the nanopores and can therefore be used to control diffusion of molecules through the membranes. It was shown that the porous membranes are biocompatible with primary vertebrate as well as insect neurons. Our results indicate that nanoporous membranes may be used to interface with biological materials in a biohybrid system, for example as an artificial chemical synapse interface.  相似文献   

20.
Conventional electrochemical anodizing processes of metals such as aluminum typically produce planar and homogeneous nanopore structures. If hydrophobically treated, such 2D planar and interconnected pore structures typically result in lower contact angle and larger contact angle hysteresis than 3D disconnected pillar structures and, hence, exhibit inferior superhydrophobic efficiency. In this study, we demonstrate for the first time that the anodizing parameters can be engineered to design novel pillar-on-pore (POP) hybrid nanostructures directly in a simple one-step fabrication process so that superior surface superhydrophobicity can also be realized effectively from the electrochemical anodization process. On the basis of the characteristic of forming a self-ordered porous morphology in a hexagonal array, the modulation of anodizing voltage and duration enabled the formulation of the hybrid-type nanostructures having controlled pillar morphology on top of a porous layer in both mild and hard anodization modes. The hybrid nanostructures of the anodized metal oxide layer initially enhanced the surface hydrophilicity significantly (i.e., superhydrophilic). However, after a hydrophobic monolayer coating, such hybrid nanostructures then showed superior superhydrophobic nonwetting properties not attainable by the plain nanoporous surfaces produced by conventional anodization conditions. The well-regulated anodization process suggests that electrochemical anodizing can expand its usefulness and efficacy to render various metallic substrates with great superhydrophilicity or -hydrophobicity by directly realizing pillar-like structures on top of a self-ordered nanoporous array through a simple one-step fabrication procedure.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号