首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We report an alternative synthesis process, cold-wall thermal chemical vapor deposition (CVD), is replied to directly deposit single-layer and few-layer graphene films on Ar plasma treated Ni and Cu foils using CH4 as carbon source. Through optimizing the process parameters, large scale single-layer graphene grown on Ni foil is comparable to that grown on Cu foil. The graphene films were able to be transferred to other substrates such as SiO2/Si, flexible transparent PET and verified by optical microscopy, Raman microscopy and scanning electron microscopy. The sheet resistance and transmission of the transferred graphene films on PET substrate were also discussed.  相似文献   

2.
Indium tin oxide (ITO) films with a smooth surface (root-mean-square roughness; Rrms=0.40 nm) were made using a combination of the deposition conditions in the ion beam-sputtering method. Sheet resistance was 13.8 Ω/sq for a 150-nm-thick film grown at 150 °C. Oxygen was fed into the growth chamber during film growth up to 15 nm, after which, the oxygen was turned off throughout the rest of the deposition. The surface of the films became smooth with the addition of ambient oxygen but electrical resistance increased. In films grown at 150 °C with no oxygen present, a rough surface (Rrms=2.1 nm) and low sheet resistance (14.4 Ω/sq) were observed. A flat surface (Rrms=0.5 nm) with high sheet resistance (41 Ω/sq) was obtained in the films grown with ambient oxygen throughout the film growth. Surface morphology and microstructure of the films were determined by the deposition conditions at the beginning of the growth. Therefore, fabrication of ITO films with a smooth surface and high electrical conductivity was possible by combining experimental conditions.  相似文献   

3.
Bilayer graphene (BLG) comprises a 2D nanospace sandwiched by two parallel graphene sheets that can be used to intercalate molecules or ions for attaining novel functionalities. However, intercalation is mostly demonstrated with small, exfoliated graphene flakes. This study demonstrates intercalation of molybdenum chloride (MoCl5) into a large‐area, uniform BLG sheet, which is grown by chemical vapor deposition (CVD). This study reveals that the degree of MoCl5 intercalation strongly depends on the stacking order of the graphene; twist‐stacked graphene shows a much higher degree of intercalation than AB‐stacked. Density functional theory calculations suggest that weak interlayer coupling in the twist‐stacked graphene contributes to the effective intercalation. By selectively synthesizing twist‐rich BLG films through control of the CVD conditions, low sheet resistance (83 Ω ??1) is realized after MoCl5 intercalation, while maintaining high optical transmittance (≈95%). The low sheet resistance state is relatively stable in air for more than three months. Furthermore, the intercalated BLG film is applied to organic solar cells, realizing a high power conversion efficiency.  相似文献   

4.
石墨烯具有较高的透过率及良好的电导率, 作为透明导电薄膜具有潜在的应用价值。首先在石英基底上引入SiO2纳米球阵列结构作为光学减反射层, 使石英基底可见光区光学透过率从93.2%增加到99.0%。然后利用常压化学气相沉积方法, 通过基底表面铜颗粒远程催化碳源, 直接在减反层上可控制备具有石墨烯/纳米减反结构的新型复合透明导电薄膜。通过去除SiO2纳米球阵列结构形成反相复制的石墨烯空心球阵列结构, 且生长时间10 min时, 对应半高宽约40 cm-1, I2D/IG = 2.31, ID/IG = 0.77, 证明在SiO2纳米球阵列减反结构上制备了低缺陷且连续的全包覆少层石墨烯薄膜。引入SiO2纳米球阵列减反结构后, 其在可见光区光学550 nm波长处的透过率平均提高了5.5%, 方块电阻相对无减反射层基底平均降低了20.09%。本研究方法避免了复杂的转移工序, 减少了对石墨烯的损失与破坏, 同时实现了高透光性及高导电性的功能协同, 在光伏器件、平板显示等领域展示出更大的应用前景。  相似文献   

5.
Many research efforts have been devoted to the replacement of the traditional indium-tin-oxide (ITO) electrode in organic photovoltaics. Solution-based graphene has been identified as a potential replacement, since it has less than two percent absorption per layer, relative high carrier mobility, and it offers the possibility of deposition on large area and flexible substrates, compatible with roll to roll manufacturing methods. In this work, soluble reduced graphene films with high electrical conductivity and transparency were fabricated and incorporated in poly(3-hexylthiophene) [6,6]-phenyl-C61-butyric acid methyl ester photovoltaic devices, as the transparent electrode. The graphene films were spin coated on glass from an aqueous dispersion of functionalized graphene, followed by a reduction process combining hydrazine vapor and annealing under argon, in order to reduce the sheet resistance. The photovoltaic devices obtained from the graphene films showed lower performance than the reference devices with ITO, due to the higher sheet resistance (2 kΩ/sq) and the poor hydrophilicity of the spin coated graphene films.  相似文献   

6.
Maeng I  Lim S  Chae SJ  Lee YH  Choi H  Son JH 《Nano letters》2012,12(2):551-555
We present terahertz spectroscopic measurements of Dirac fermion dynamics from a large-scale graphene that was grown by chemical vapor deposition and on which carrier density was modulated by electrostatic and chemical doping. The measured frequency-dependent optical sheet conductivity of graphene shows electron-density-dependence characteristics, which can be understood by a simple Drude model. In a low carrier density regime, the optical sheet conductivity of graphene is constant regardless of the applied gate voltage, but in a high carrier density regime, it has nonlinear behavior with respect to the applied gate voltage. Chemical doping using viologen was found to be efficient in controlling the equilibrium Fermi level without sacrificing the unique carrier dynamics of graphene.  相似文献   

7.
Post-growth transfer and high growth temperature are two major hurdles that research has to overcome to get graphene out of research laboratories. Here, using a plasma-enhanced chemical vapour deposition process, we demonstrate the large-area formation of continuous transparent graphene layers at temperatures as low as 450?°C. Our few-layer graphene grows at the interface between a pre-deposited 200 nm Ni catalytic film and an insulating glass substrate. After nickel etching, we are able to measure the optical transmittance of the layers without any transfer. We also measure their sheet resistance directly and after inkjet printing of electrical contacts: sheet resistance is locally as low as 500 Ω sq?1. Finally the samples equipped with printed contacts appear to be efficient humidity sensors.  相似文献   

8.
Nezich D  Reina A  Kong J 《Nanotechnology》2012,23(1):015701
In this work, the electrical characterization of graphene films grown by chemical vapor deposition (CVD) on a Ni thin film is carried out and a simple relation between the gate-dependent electrical transport and the thickness of the films is presented. Arrays of two-terminal devices with an average graphene film thickness of 6.9 nm were obtained using standard fabrication techniques. A simple two-band model is used to describe the graphene films, with a band overlap parameter E(0) = 17 meV determined by the dependence of conductivity on temperature. Statistical electrical measurement data are presented for 126 devices, with an extracted average background conductivity σ = 0.91 mS, average carrier mobility μ = 1300 cm(2) V(-1) s(-1) and residual resistivity ρ = 1.65 kΩ. The ratio of mobility to conductivity is calculated to be inversely proportional to the graphene film thickness and this calculation is statistically verified for the ensemble of 126 devices. This result is a new method of graphene film thickness determination and is useful for films which cannot have their thickness measured by AFM or optical interference, but which are electrically contacted and gated. This general approach provides a framework for comparing graphene devices made using different fabrication methods and graphene growth techniques, even without prior knowledge of their uniformity or thickness.  相似文献   

9.
The in-plane conductance of individual graphene nanoislands thermally grown on SiC substrate was successfully measured using an integrated nanogap probe without lithographic patterning. A Pt nanogap electrode with a 30?nm gap integrated on the cantilever tip of a scanning probe microscope enables us to image a conductance map of graphene nanoislands with nanometer resolution. Single-?and double-layer graphene islands are clearly distinguished in the conductance image. The size dependence of the conductance of the nanoislands suggests that the band gap opening is due to the lateral confinement effect.  相似文献   

10.
This article presents a novel and simple method of liquid-phase exfoliation to fabricate graphene films that possess high conductivity and good light transparency. Graphite was exfoliated in water–ethanol mixture, with the aid of Nafion, to give highly stable graphene dispersion. Transparent graphene thin films were easily deposited by vacuum filtration from the Nafion-stabilized graphene dispersion. More important, low-temperature air-annealing (at 250 °C for 2 h) was employed to treat freshly-prepared graphene films for the first time. It demonstrates that the technique is advantageous and quite efficient for the fabrication of exfoliated graphite films with defect-free structure and high purity, confirmed by TEM, SEM, FTIR, XPS, and Raman spectra. The resulting graphene films possess a sheet resistance lower than 2.86 kΩ sq−1 and optical transmittance over 84% at a typical wavelength of 550 nm.  相似文献   

11.
Direct growth of graphene on glass can bring an innovative revolution by coupling the complementary properties of traditional glass and modern graphene (such as transparency and conductivity), offering brand new daily‐life related applications. However, preparation of high‐quality graphene on nonmetallic glass is still challenging. Herein, the direct route of low sheet resistance graphene on glass is reported by using in situ‐introduced water as a mild etchant and methane as a carbon precursor via chemical vapor deposition. The derived graphene features with large domain sizes and few amorphous carbon impurities. Intriguingly, the sheet resistance of graphene on glass is dramatically lowered down to ≈1170 Ω sq?1 at the optical transmittance ≈93%, ≈20% of that derived without the water etchant. Based on the highly conductive and optical transparent graphene on glass, a see‐through thermochromic display is thus fabricated with transparent graphene glass as a heater. This work can motivate further investigations of the direct synthesis of high‐quality graphene on functional glass and its versatile applications in transparent electronic devices or displays.  相似文献   

12.
使用脉宽12ns,波长1064nm调Q Nd:YAG激光器对真空阴极电弧沉积(VCAD)法制备的类金刚石薄膜进行抗激光损伤测试,结果表明,VCAD法镀制的薄膜抗激光损伤阈值为0.6J/cm^2。通过对热冲击效应的数值计算,得到了光斑中心的温度场和薄膜表面的应力场分布。研究表明,热应力在类金刚石薄膜的破坏过程中起主导作用,脉冲电弧沉积的DIE薄膜的激光损伤主要源于应力破坏。  相似文献   

13.
The surface resistance of Ag, Au and A1 thin conducting films deposited on low loss dielectric substrates at microwave frequencies using TE011 mode single post-dielectric resonator (10-13.22 GHz) was measured to calculate their conductivity in relation to layers thickness. This method enabling measurements near metal-insulator percolation transition was also applied for epitaxial graphene deposited on semi-insulating SiC. Moreover, effective microwave conductivity has been determined for intentionally made aluminum island structure where the DC conductivity is equal to zero. Special attention was paid to films thickness measurements which is critical for accuracy of sheet resistance calculation. Conductivity of thin metal layers and very thin graphene was compared.  相似文献   

14.
Electrostatic deposition of graphene   总被引:2,自引:0,他引:2  
Loose graphene sheets, one to a few atomic layers thick, are often observed on freshly cleaved HOPG surfaces. A straightforward technique using electrostatic attraction is demonstrated to transfer these graphene sheets to a selected substrate. Sheets from one to 22?layers thick have been transferred by this method. One sheet after initial deposition is measured by atomic force microscopy to be only an atomic layer thick (~0.35?nm). A few weeks later, this height is seen to increase to ~0.8?nm. Raman spectroscopy of a single layer sheet shows the emergence of an intense D band which dramatically decreases as the number of layers in the sheet increase. The intense D band in monolayer graphene is attributed to the graphene conforming to the roughness of the substrate. The disruption of the C-C bonds within the single graphene layer could also contribute to this intense D band as evidenced by the emergence of a new band at 1620?cm(-1).  相似文献   

15.
Iron-catalyzed spin-capable multi-walled carbon nanotubes (MWCNTs) were grown on a SiO2 wafer by chemical vapor deposition, which was carried out at 780 degrees C using C2H2 and H2 gases. We fabricated a flexible transparent film using the spun MWCNTs. The MWCNT sheets were produced by being continuously pulled out from well-aligned MWCNTs grown on a substrate. The MWCNT sheet films were manufactured by simply carrying out direct coating on a flexible film or glass. The thickness of the sheet film decreased remarkably when alcohol was sprayed on the surface of the sheet. The alcohol spraying increased the transmittance and decreased the electrical resistance of the MWCNT sheet films. The sheets obtained after alcohol spraying had a resistance of -699 omega and a transmittance of 81%-85%. The MWCNT sheet films were heated by applying direct current. The transparent heaters showed a rapid thermal response and uniform distribution of temperature. In addition, we tested the field emission of the sheet films. The sheet films showed a turn-on voltage of -1.45 V/microm during field emission.  相似文献   

16.
Focused-electron-beam-induced deposition, or FEBID, enables the fabrication of patterns with sub-10 nm resolution. The initial stages of metal deposition by FEBID are still not fundamentally well understood. For these investigations, graphene, a one-atom-thick sheet of carbon atoms in a hexagonal lattice, is ideal as the substrate for FEBID writing. In this paper, we have used exfoliated few-layer graphene as a support to study the early growth phase of focused-electron-beam-induced deposition and to write patterns with dimensions between 0.6 and 5 nm. The results obtained here are compared to the deposition behavior on amorphous materials. Prior to the deposition experiment, the few-layer graphene was cleaned. Typically, it is observed in electron microscope images that areas of microscopically clean graphene are surrounded by areas with amorphous material. We present a method to remove the amorphous material in order to obtain large areas of microscopically clean graphene flakes. After cleaning, W(CO)(6) was used as the precursor to study the early growth phase of FEBID deposits. It was observed that preferential adsorption of the precursor molecules on step edges and adsorbates plays a key role in the deposition on cleaned few-layer graphene.  相似文献   

17.
Graphene was grown on Cu foil by chemical vapor deposition with CH4 as carbon source, and then was transferred onto various substrates for device applications. The structural and optical properties of graphene were investigated, comprehensively. Raman spectra indicate as-grown and transferred graphene films are homogenous monolayer graphene. Optical microscopy and scanning electron microscopy images reveal wrinkle-free and smooth surface of transferred graphene, confirming the high quality of graphene. In addition, the transferred graphene on glass exhibits excellent transmittances in the visible region (89.3 % at ~500 nm). Therefore, the results present the controllable approaches to achieve as-grown and transferred high quality graphene for the fabrication of multiple nanoelectronic devices.  相似文献   

18.
ABSTRACT

A series of polyurethane composites with constant 5 wt-% loading of 2D graphene nanosheets and varying levels of 1D silver nanowire (AgNW) were prepared by a solution mixing method. The electrical conductivity of composite films was measured using a 4-point probe method. An extremely high conductivity of 3,657?S?cm–1 was achieved with a polyurethane composite containing 25?wt-% AgNW and 5?wt-% graphene, confirming that a combination of AgNW and graphene is very effective in producing conducting pathways to achieve high conductivity. The incorporation of AgNW and graphene was confirmed by scanning electron microscopy and energy dispersive spectrometry. Additionally, the results of tensile strengths and thermogravimetric analysis showed that the as-prepared polyurethane composite films possessed good mechanical properties and stable thermal properties.  相似文献   

19.
硝酸掺杂提高石墨烯透明导电膜导电性研究   总被引:1,自引:0,他引:1  
石墨烯同时具备高透过率和良好的导电性可作为透明导电材料,然而由于CVD法制备的石墨烯的多畴特性,以及石墨烯本征载流子浓度较低,目前石墨烯透明导电膜方阻偏高,还无法满足实际应用需要,因此探索提高石墨烯的导电性对推进石墨烯透明导电膜应用发展是非常重要的。通过掺杂提高石墨烯的载流子浓度从而提高石墨烯的导电性是其中一条重要途径。采用CVD法在铜箔上制备了石墨烯透明导电膜,并用硝酸处理石墨烯,研究了掺杂作用对石墨烯载流子浓度以及电导率的影响。实验结果证实硝酸处理会在石墨烯中引入P型掺杂,掺杂使得载流子的浓度增加了约2.5倍。方阻从530~205Ω/□,显著改善了石墨烯的导电性能,而石墨烯高透过率特性并未因掺杂而降低。  相似文献   

20.
In this work, we systematically investigate and compare noninvasive doping of chemical vapor deposition graphene with three molecule dopants through spectroscopy and electrical conductivity techniques. Thionyl chloride shows the smallest improvement in conductivity with poor temporal and thermal stability and nitric acid induces the biggest sheet resistance reduction with modified stability. Molybdenum trioxide doping stands out, after thermal annealing, with both causing a significant sheet-resistance reduction and having superior temporal and thermal stability. These properties make it ideal for applications in advanced electronics. Theoretical studies based on the van der Waals density functional method suggest that cluster formation of molybdenum trioxide underpins the significant reduction in sheet resistance, and the stability, that arises after thermal annealing. Our comparative study clarifies charge transfer doping of graphene and brings understanding of the weak-interaction nature of such non-destructive doping of graphene. Our work also shows that we can use weak chemisorption to tailor the electronic properties of graphene, for example, to improve conductivity. This ability open up possibilities for further use of graphene in electronic interconnects, field effect transistors and other systems.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号