首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 312 毫秒
1.
以二氧化锰、氧化镍和碳酸锂为原料,采用二次焙烧工艺制备了尖晶石型镍锰酸锂(LiNi0.5Mn1.5O4)正极材料。采用X射线衍射(XRD)、扫描电镜(SEM)、交流阻抗测试(EIS)和充放电测试对LiNi0.5Mn1.5O4正极材料进行了表征。结果表明,合成的材料晶体结构完整,形貌规则,并且表现出优异的电化学性能,其0.2 C首次放电容量为134.6 mA·h/g,5 C首次放电容量为112.9 mA·h/g,5 C循环34次后容量保持率为103.3%。  相似文献   

2.
采用流变相法结合高温热处理制备LiNi0.5Mn1.5O4-xFx(x=0,0.1)。用X射线衍射、扫描电镜和电化学测试等手段对合成材料进行了表征。结果表明,F的掺入抑制了LiNi0.5Mn1.5O4颗粒长大,增强了Li+在固相中的扩散能力,改善了电极与电解质溶液之间的界面性质,有效地提高了LiNi0.5Mn1.5O4的循环性能和倍率性能。0.2C放电时LiNi0.5Mn1.5O3.9F0.1的首次放电容量达到147.8mA.h/g,经80次循环后平均每次循环的容量衰减仅为0.0068%。而0.5C和2.0C放电时首次放电容量达到0.2C放电时的94.2%和83.8%。  相似文献   

3.
刘水香  张海朗 《化学世界》2013,54(1):1-4,17
采用溶胶-凝胶法合成层状LiNi1/3Co1/3Mn1/3O1.95Y0.05(Y=O,F,Cl,Br)正极材料,在850℃空气氛围下煅烧20h得到晶型较好的正极材料。以XRD、SEM和充放电测试等手段对材料的晶体结构、表观形貌和电化学性能进行表征。XRD显示F-和Cl-掺杂材料具有高度有序的二维层状结构;充放电测试表明,掺杂F-和Cl-的材料放电比容量、循环性能和倍率性能均优于未掺杂材料,特别是掺杂F-材料在55℃,电压范围为2.0~4.6V,0.15mA电流下首次放电比容量高达207.5mAh/g,且0.9mA电流下第60次循环的容量仍达到165.1mAh/g。掺杂Br-的材料结构稳定性、循环性能和放电比容量均比未掺杂材料差。  相似文献   

4.
以可溶性的金属离子盐为原料,以(NH4)2CO3为沉淀剂,采用沉淀法制备正极材料LiNi0.5Mn1.5O4,讨论了煅烧制度对材料性能的影响.采用X射线衍射、扫描电子显微镜和室温条件下充放电测试,对最终产物的物相、形貌和电化学性能进行了表征.结果表明:在750、850、950℃均得到了纯相的LiNi0.5Mn1.5O4材料;在850℃制备的LiNi0.5Mn1.5O4具有最好的电化学性能,在0.1、0.5、1.0、5.0C充放电倍率下容量分别为126.1、125.0、120.0、105.0 mA.h/g,以0.5C的倍率循环100次后,容量仍有119.0 mA.h/g,与初始容量相比,保持率达到94%.  相似文献   

5.
采用固相法制备正极材料LiNi1/3Co1/3Mn1/3O2,用X射线衍射仪(XRD)、扫描电子显微镜(SEM)/透射电镜(TEM)分析材料的结构和形貌特征,用LAND电池测试系统测试材料的电化学性能(充放电容量和循环性能等)。以LiOH.H2O,H2C2O4.2H2O,Ni(AC)2.4H2O,Co(AC)2.4H2O和Mn(AC)2.4H2O为原料,采用固相法在不同煅烧温度和煅烧时间下制备的层状正极材料LiNi1/3Co1/3Mn1/3O2具有典型的α-NaFeO2型层状结构特征,晶型结构完整。电化学性能测试结果表明,在850℃下保温15 h合成的正极材料电化学性能最优,在电流密度为120 mA/g、充放电电压在2.75~4.5 V时,经30次循环后放电比容量为163.5 mA.h/g,容量保持率为94%;50次循环后为157.2 mA.h/g,容量保持率为90.8%。  相似文献   

6.
王海龙 《广东化工》2013,(23):16-16,32
采用固相烧结法合成了Nb掺杂的LiNi0.5Mn1.5O4正极材料.通过XRD测试和充放电测试表征了材料的晶体结构和电化学性能.结果表明Nb掺杂容易产生LiNbO3杂质,并影响其放电能力,少量Nb掺杂获得的LiNi0.425Nb0.03Mn1.5O4展示出良好的大电流放电性能.  相似文献   

7.
采用热分析法对不同组成的LiOH-LiNO3二元体系进行研究,绘制了具有最低共熔点的该二元体系的步冷曲线和t-x相图,该体系的最低共熔点为175.7℃。利用低共熔混合物LiNO3-LiOH为锂盐,与高密度前驱体Ni0.8Co0.2(OH)2混合经2个恒温阶段烧结(600℃恒温6 h、800℃恒温24 h)制备出了振实密度高达3.23 g/cm3的锂离子电池正极材料LiNi0.8Co0.2O2。X射线衍射分析表明合成的LiNi0.8Co0.2O2具有规整的层状NaFeO2结构。电性能测试表明:在0.5 mA/cm2放电电流密度和3.0—4.3 V的电压范围内,LiNi0.8Co0.2O2首次放电比容量达175(mA.h)/g,放电比容量为163(mA.h)/g,库仑效率为93%。实验结果表明采用该工艺能够制备出电化学性能良好的锂离子正极材料。  相似文献   

8.
采用同相法制备正极材料LiNi1/3Co1/3Mn1/3O2,用X射线衍射仪(XRD)、扫描电子显微镜(SEM)/透射电镜(TEM)分析材料的结构和形貌特征,用LAND电池测试系统测试材料的电化学性能(充放电容量和循环性能等).以LiOH·H2O,H2C2O4·2H2O,Ni(AC)2·4H2O,Co(AC)2·4H2O和Mn(AC)2·4H2O为原料,采用固相法在不同煅烧温度和煅烧时间下制备的层状正极材料LiNi1/3Co1/3Mn1/3O2具有典型的α-NaFeO2型层状结构特征,晶型结构完整.电化学性能测试结果表明,在850℃下保温15 h合成的正极材料电化学性能最优,在电流密度为120 mA/g、充放电电压在2.75~4.5 V时,经30次循环后放电比容量为163.5 mA·h/g,容量保持率为94%;50次循环后为157.2 mA·h/g,容量保持率为90.8%.  相似文献   

9.
低共熔混合锂盐合成LiNi_(0.8)Co_(0.2)O_2的研究   总被引:1,自引:0,他引:1  
常照荣  齐霞  吴锋  汤宏  孙东 《应用化工》2005,34(9):535-538
在空气气氛中,采用低共熔混合物L iNO3-L iOH为锂盐,制备出了锂离子电池正极材料L iN i0.8Co0.2O2。XRD分析表明:此工艺制得的正极材料具有完整的层状结构。电性能测试表明:在0.5 mA/cm2的充放电电流密度和2.7~4.2 V的电压范围内,L iN i0.8Co0.2O2首次放电比容量为145.2 mA.h/g,充放电库仑效率为83.8%;循环20次后,放电比容量为124.8 mA.h/g。该方法能制备出电化学性能良好的L iN i0.8Co0.2O2正极材料。  相似文献   

10.
利用氟代碳酸乙烯酯(FEC)和二氟草酸硼酸锂(LiDFOB)优良的成膜性、稳定性和耐高压性,研究了在1 mol/L LiPF6 FEC/碳酸丙烯酯(PC)/碳酸二甲酯(DMC)中加入LiDFOB和三(三甲基硅烷)硼酸酯(TMSB)对高电压材料LiNi0.5Mn1.5O4电化学性能的影响,利用循环伏安法和扫描电镜分析了两种电解液中电化学性能的差异. 结果表明,在FEC基电解液中加入LiDFOB和添加剂TMSB使电解液的分解电位提高至5.5 V(vs. Li/Li+)以上,对铝箔有良好的钝化作用. Li/LiNi0.5Mn1.5O4半电池在含LiDFOB和TMSB的电解液中的初始放电比容量达126.8 mA?h/g,库伦效率为99%,充放电200次后比容量仍为108.2 mA?h/g,容量保持率为85.3%. 而在不含LiDFOB和TMSB的电解液中,电池容量迅速衰减,85次充放电循环后容量保持率仅为60.7%.  相似文献   

11.
以纳米TiO2和LiNO3为原料,尿素为燃料,燃烧法合成了锂离子电池负极材料Li4Ti5O12. 利用XRD、SEM和恒电流充放电、循环伏安和交流阻抗对其进行表征. 结果表明,预设炉温850℃,尿素与锂摩尔比1,焙烧8 h,制备得到平均粒径小于500 nm、粒度分布均匀的纯相尖晶石型结构Li4Ti5O12,并具有良好的电化学性能,具有1.5 V充放电平台,在0.1 C倍率下(1 C=170 mA·h/g),其首次充放电容量达到168 mA·h/g,经过100次循环后放电比容量仍有162 mA·h/g,容量保持率96.4%.  相似文献   

12.
采用共沉淀法合成LiNi0.5Mn1.5O4正极材料并对其进行退火处理,研究退火温度对材料电化学性能的影响。结果表明,退火温度会导致LiNi0.5Mn1.5O4正极材料中Mn3+含量的变化,进而影响材料的倍率性能和循环性能。其中,625 ℃退火8 h所制备的样品表现出最好的电化学性能,其0.2 C倍率首次放电容量为130.8 mA·h/g;1 C倍率首次放电容量为126.5 mA·h/g,50次循环后,容量保持率高达100.8%。  相似文献   

13.
采用溶胶-凝胶法合成了复合离子掺杂的尖晶石型锰酸锂Li1.02Mn1.92Al0.02Cr0.02Mg0.02O4-xFx(x=0,0.06)正极材料,并用XRD、CV、EIS和充放电测试等研究了其结构和电化学性能。结果表明,F与金属离子(Li、Al、Cr、Mg)的复合掺杂不仅提高了材料的比容量,还增加了尖晶石结构的稳定性,改善了材料的循环性能和可逆性能;充放电测试结果表明,Li1.02Mn1.92Al0.02Cr0.02Mg0.02O3.94F0.06具有优越的循环性能,常温下,以1/3C充放电的首次放电容量及50个循环后的容量保持率分别为117.9 mAh/g,96.9%。  相似文献   

14.
掺杂元素对锂离子电池正极材料LiFePO4的影响   总被引:1,自引:2,他引:1  
为提高锂离子电池正极材料LiFePO4的充放电性能,用Mg,Al,V和Ti对LiFePO4进行掺杂。研究了掺杂元素的种类和用量对LiFePO4性能和结构的影响。可用高温固相反应制备单相LiMxFe1-xPO4 (M=Mg,Al,V和Ti)。在LiMxFe1-xPO4 材料中,LiV0. 05Fe0. 95PO4具有比LiFePO4更好的电化学性能,用80mA/g的电流进行充放电时,第二次放电比容量为130. 429mA·h/g,循环20次后为131. 196mA·h/g。  相似文献   

15.
采用"熔融浸渍法"合成了Mg和F共掺杂的不同温度下的锂离子电池正极材料Li Mn2-xMgxO3.97F0.03(x=0.05,0.1);煅烧温度为700,750和800°C。通过XRD对样品进行测试,样品为单一尖晶石结构的物相;并用SEM测试,对样品进行了形貌研究。用所制备的材料作为正极材料组装了模拟锂离子电池;在室温下进行恒电流充-放电性能测试,测试条件为3.3~4.3 V和0.2mA/cm2电流密度。随着材料制备温度的升高,电池的初始放电容量有逐渐增加的趋势,但充放电循环的容量损失也逐渐增加;氟掺杂量一定,镁掺杂量较多时,对应温度下煅烧的样品的结晶程度较好,样品的电化学性能也较好。在800下°C样品Li Mn1.9Mg0.1O3.97F0.03初始容量高达108 mAh/g,60次充放电循环后,其容量保持率高达81%,具有优良的循环稳定性能。  相似文献   

16.
采用水热法,通过Fe、Mg共掺杂制备了一系列锂二次电池正极材料LiMn_(0.7)Fe_(0.3-x)Mg_xPO_4/C(x=0,0.02,0.05,0.07)。通过X射线衍射、扫描电子显微镜对材料结构、形貌进行表征。采用所得正极材料组装电池,并利用恒流充放电和循环伏安对其电化学性能进行测试。结果表明:Fe、Mg元素完全进入材料晶格,并占据Mn位,适量的Mg掺杂能够增大(101)的晶面间距,使得Li~+扩散通道变宽。所制得的电池倍率性能曲线在1C前后发生反转:当充放电倍率小于1C时,LiMn_(0.7)Fe_(0.28)Mg_(0.02)PO_4/C的放电比容量最高,在0.1C时为150.3 mA·h/g;当倍率大于1C时,LiMn_(0.7)Fe_(0.23)Mg_(0.07)PO_4/C放电比容量最高,5C时为94.5 mA·h/g。  相似文献   

17.
锂离子电池正极材料LiNi_(0.8)Co_(0.2)O_2的研究   总被引:3,自引:0,他引:3  
顾健  顾大明  史鹏飞 《精细化工》2004,21(2):88-90,94
低成本、高比容量的LiNi0.8Co0.2O2是取代已商品化锂电池正极材料LiCoO2的候选材料。用工业原料,通过共沉淀法(pH=11 2±0 05)合成了β Ni0.8Co0.2(OH)2,将其和LiOH·H2O混合,在空气中先后于650℃和750℃烧结8h和20h,制得具有良好层状结构的LiNi0.8Co0.2O2。用合成的材料制备电池,在0 2C、3 0~4 1V进行充放电实验,其放电平台在3 8V以上,首次放电容量超过170mA·h/g,10次循环后,放电容量还能保持在164mA·h/g左右,且库仑效率达到96%以上。  相似文献   

18.
采用液相共沉淀+高温煅烧法制备正极材料LiNi0.5Co0.2Mn0.3O2,利用XRD、SEM及恒电流充放电等等分析手段,研究不同金属离子浓度合成镍钴锰酸锂前驱体对最终产品晶体结构、形貌及其电化学性能的影响。结果表明:金属离子浓度为2.0 mol/L时,所制备材料晶型层状结构发育完整,粒径分布均匀,球形度高且表面光滑,材料首次放电比容量达172.5 mAh/g,首次库伦效率为90.84%。  相似文献   

19.
利用自蔓延燃烧在450℃低温下合成了Li1.2Fe0.2Mn0.6O2纳米颗粒(LFMO-450),借助XRD、SEM和TEM及恒流充放电测试研究了其晶体结构、微观形貌、超微结构和电化学性能.结果表明,样品LFMO-450具有良好的α-NaFeO2层状结构,为粒径分布于45~88 nm的纳米颗粒.恒流充放电测试结果表明,在室温及2.0~4.8 V充放电范围内,该样品在电流密度为0.1、0.2、0.5、1和2 C倍率时首次放电比容量分别为237.5、170.7、124.1、101.9和82.8 mA·h/g,表现出良好的倍率性能;在1 C倍率下,样品首次与循环60次后放电比容量分别为106.4和87.8 mA·h/g,容量保持率为82.5%,表现出良好的循环性能.  相似文献   

20.
用固相法制备球形LiNi0.7Co0.25Al0.05O2粉体,并综合研究该粉体的微观结构和电化学特性.用X射线衍射和透射电子选区衍射分析LiNi0.7Co0.25Al0.05O2的晶体结构.结果表明LiNi0.7Co0.25Al0.05O2为纯α-NaFeO2型六方晶结构.用扫描电镜观察二次颗粒的形状为球形.从循环伏安扫描实验中发现掺杂Al元素能够抑制LiNi0.7Co0.3O2在Li+插入-脱出过程中的结构相变,提高材料的循环稳定性.在电压为3.0~4.3 V,充放电倍率为C/5的条件下,LiNi0.7Co0.25Al0.05O2首次放电容量达到161.5 mA@·h/g,30次循环后放电容量为156.1 mA·h/g,放电容量损失率仅为3.3%.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号