首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
用新研制的超音速等离子喷涂(S—APS)和2种进口超音速火焰喷涂(HVOF)设备制备了WC—12Co涂层,分析了3种喷涂工艺对涂层的表面和断面显微形貌、组织结构、孔隙率和氧化、脱碳,以及涂层的显微硬度、结合强度的影响。结果表明,在所试验的条件下,超音速等离子喷涂WC—12Co涂层显示出最致密的组织结构和最高的显微硬度。  相似文献   

2.
This study deals with the numerical investigation of a hybrid thermal spray process that combines HVOF and thermal plasma technologies. In this process, a thermal plasma is used to assist the combustion process that proceeds in a quasi-conventional HVOF system. It is expected that this coupling makes the HVOF system more flexible in terms of working parameters and sprayed materials. Also, a rather low fuel gas consumption and high deposition rate compared to that of most of the conventional HVOF guns are sought. Modeling this process can help to understand the phenomena that control the operation of the spray system and, therefore, help to optimize it. The model involves the plasma formation, combustion process, and expansion of the supersonic jet in the ambient atmosphere. In this study, the system uses argon as plasma-forming gas and methane as fuel gas. Fuel and oxidant are not premixed before entering the combustion chamber. In the model, methane oxidation is represented by a single-step global reaction considering only a few chemical species (fuel, oxidant, and product species); the turbulent non-premixed combustion is modeled by a fast-chemistry combustion model that assumes that the rate of chemical reaction is controlled by turbulence. The model equations are solved using the CFD software Fluent 6.3. The main gas flow characteristics (velocity, temperature, and pressure) in presence and absence of the plasma source are compared and discussed, and the benefits of the plasma source are discussed in the light of predictions and fuel combustion mechanisms.  相似文献   

3.
High velocity oxygen-fuel (HVOF) thermal spray coating finds application in industry due to its superior resistance to corrosion and thermal loading. In the HVOF process, the metallic powders at elevated temperature are sprayed at supersonic speed onto a substrate material. The powder granules sprayed impact onto each other, forming a mechanical bonding across the coating layer. In most of the cases, the distances among the particles (powder granules sprayed) are not the same, which in turn results in inhomogeneous structure across the coating layer. Moreover, the rate of oxidation of the powder granules during the spraying process varies. Consequently, the electrochemical response of the coating layer surfaces next to the base material and free to atmosphere differs. In the current study, the electrochemical response of a coating sheet formed during HVOF thermal spraying was investigated. NiCrMoNb alloy (similar to Inconel 625) wass used for the powder granules. Thermal spraying was carried out onto a smooth surface of stainless steel workpiece (without grid blasting), and later the coating layer was removed from the surface to obtain the coating sheet for the electrochemical tests. It was found that the corrosion rate of the smooth surface (surface next to the stainless steel surface before its removal) is considerably larger than that corresponding to the rough surface (free surface) of the coating sheet, and no specific patterns were observed for the pit sites.  相似文献   

4.
Research for alternatives of hard chrome plating has been widely carried out in the world. High-velocity oxygen-fuel (HVOF)-sprayed cermet coating is one of such alternative candidates. Depending on the cermet powder for spraying, however, sometimes the density of the sprayed coatings is not sufficient for desired corrosion resistance. A gas-shroud (GS) attachment for use with commercial HVOF, which is effective in suppressing oxidation of sprayed particles while raising the velocity of sprayed particles, has been developed. The GS-HVOF spray has been successfully applied to corrosion resistant alloys such as HastelloyC. In this study, a WC cermet system with corrosion and wear resistance was sprayed using a gas-shroud attachment. Porosity in the coatings was observed by the microscopic observation of cross sections. Corrosion and wear resistance was evaluated by alternating current corrosion monitoring in artificial seawater and abrasive wear-tester, respectively. Coatings deposited by the gas-shroud HVOF were superior in terms of both corrosion and wear resistance to coatings formed by the conventional HVOF. The density of the sprayed coatings was improved using the gas-shroud attachment, resulting in superior corrosion and wear resistance.  相似文献   

5.
Several designs of high-velocity oxygen fuel (HVOF) thermal spray systems have been created during the last decade. The most advanced systems are now producing coatings comparable in quality to detonation (D-gun) coatings. This paper presents numerical analysis of the interaction of dispersive particles with the carrying gas flow for three different HVOF systems, along with a method to calculate the parameters of sprayed particles that highlights the advantages and limitations of each design. The method includes gas dynamical calculations of the gas flow in an accelerating channel and calculations of the injected par-motion and thermal state (temperature and melted mass fraction). The calculations were performed for particles of tungsten carbide, aluminum oxide, and zirconium oxide with size distributions of 10 to 80 μm. Two conventional types of HVOF systems were considered: those with a supersonic accelerating channel and those with a subsonic accelerating channel (without a de Laval nozzle). A novel design is pro-posed that contains a combined gas dynamical path with functionally separated regions of heating and acceleration. The regularities and distinctions in the behavior of the metallic and ceramic oxide particles are discussed for different jet configurations. The results obtained indicate that it is possible to signifi-cantly affect particle parameters by using the new configuration solutions without creating construction complications.  相似文献   

6.
The combustion and flow behavior within a high velocity oxygen-fuel (HVOF) thermal spray gun is very complex and involves multiphase flow, heat transfer, chemical reactions, and supersonic/subsonic transitions. Additionally, this behavior has a significant effect on the formation of a coating. Non-premixed combustion models have been developed and are able to provide insight into the underlying physics of the process. Therefore, this investigation employs a non-premixed combustion model and the SST \(k - \omega\) turbulence model to simulate the flow field of the JP5000 (Praxair-TAFA, US) HVOF thermal spray gun. The predicted temperature and velocity have a high level of agreement with experimental data when using the non-premixed combustion model. The results are focused on the fuel combustion, the subsequent gas dynamics within the HVOF gun, and the development of a supersonic free jet outside the gun. Furthermore, the oxygen/fuel inlet turbulence intensity, the fuel droplet size, and the oxygen/fuel ratio are investigated to determine their effect on the supersonic flow characteristics of the combustion gas.  相似文献   

7.
《Acta Materialia》2007,55(15):5089-5101
The application of thick thermally sprayed coatings on metallic parts has been widely accepted as a solution to improve their corrosion and wear resistance. Key attributes of these coatings, such as adherence to the substrate, are strongly influenced by the residual stresses generated during the coating deposition process. In high-velocity oxy-fuel (HVOF) thermal spraying, due to the relatively low temperature of the particle, significant peening stresses are generated during the impact of molten and semi-molten particles on the substrate. Whilst models exist for residual stress generation in plasma-based thermal spray processes, finite element (FE) prediction of residual stress generation for the HVOF process has not been possible due to the increased complexities associated with modelling the particle impact. A hybrid non-linear explicit–implicit FE methodology is developed here to study the thermomechanical processes associated with particle impingement and layer deposition. Attention is focused on the prediction of residual stresses for an SS 316 HVOF sprayed coating on an SS 316 substrate.  相似文献   

8.
The high-velocity oxygen-fuel (HVOF) technology was employed to deposit the bondcoat of a thermal barrier coating (TBC) system. The isothermal oxidation rate at 1100 °C of the TBC system with the HVOF bondcoat is two times lower than that of the TBC system with the detonation-sprayed bondcoat. The better isothermal oxidation resistance of the TBCs with HVOF sprayed bondcoats demonstrates that unlike alumina dispersoids in the HVOF sprayed bondcoat, rough surface of the detonation-sprayed bondcoat is undesirable for the detonation-sprayed TBC system concerning oxidation due to a large specific surface area and unfavorable oxides on the bondcoat.  相似文献   

9.
The most advanced thermal barrier coating (TBC) systems for aircraft engine and power generation hot section components consist of electron beam physical vapor deposition (EBPVD) applied yttria-stabilized zirconia and platinum modified diffusion aluminide bond coating. Thermally sprayed ceramic and MCrAlY bond coatings, however, are still used extensively for combustors and power generation blades and vanes. This article highlights the key features of plasma spray and HVOF, diffusion aluminizing, and EBPVD coating processes. The coating characteristics of thermally sprayed MCrAlY bond coat as well as low density and dense vertically cracked (DVC) Zircoat TBC are described. Essential features of a typical EBPVD TBC coating system, consisting of a diffusion aluminide and a columnar TBC, are also presented. The major coating cost elements such as material, equipment and processing are explained for the different technologies, with a performance and cost comparison given for selected examples.  相似文献   

10.
It is commonly observed that there is a performance gap between the corrosion resistance of thermally sprayed coatings and the equivalent bulk material. This is attributed to the significantly modified microstructure of the sprayed coatings. However, currently there is no detailed understanding of which aspects of microstructural modification are primarily responsible for this performance gap. In this work several deliberately microstructurally modified versions of the Ni-based superalloy Inconel 625 were produced. These were subjected to potentiodynamic electrochemical testing in 0.5 M H2SO4 to investigate the links between specific microstructural features and electrochemical behaviour. Samples were prepared by high-velocity oxy-fuel (HVOF) thermal spraying, laser surface remelting using a high power diode laser and conventional powder sintering. Microstructural features were examined by optical and scanning electron microscopy and X-ray diffraction. Potentiodynamic testing was carried out on the following forms of Inconel 625: wrought sheet; HVOF sprayed coatings; sintered powder compacts; laser melted wrought sheet and HVOF sprayed coatings. Using the corrosion behaviour, i.e. passive current density, of the wrought sheet as a baseline, the performance of different forms of Inconel 625 was compared. It is found that a fine dendritic structure (with associated microsegregation) produced by laser remelting wrought sheet has no significant effect on corrosion performance. Up to 12% porosity in sintered powder samples increases the passive current density by a factor of only around 2. As observed previously, the passive current density of HVOF sprayed coatings is 20-40 times greater. However, HVOF coatings subjected to laser surface remelting are found to have a passive current density close to that of wrought material. It is concluded that, whilst porosity in coatings produces some decrease in corrosion resistance, the main contributing factor is the galvanic corrosion of localised Cr-depleted regions which are associated with oxide inclusions within HVOF sprayed samples.  相似文献   

11.
Three different projection system are used to prepare NiCrAlY bond coats over metallic substrates: atmospheric plasma spray (APS), high velocity oxyfuel (HVOF) and high frequency pulse detonation (HFPD). These coatings were tested in hot corrosion experiments with sprayed Na2SO4 at 1000 °C for 20 and 100 h experiments in air. Coatings surface composition after thermal treatment was characterised by XRD and SEM. Cross section of coatings were analysed by SEM-EDX. A relationship between microstructural characteristics of initial coatings and final performance in hot corrosion was found in terms of porosity percentage: plasma sprayed coatings present higher percentage of porosity compared to HVOF and HFPD projection systems for the same composition and Al is heavily consumed in interparticle oxidation. This Al depletion in turn involves intrinsic chemical failure and surface layer is comprised by a porous spinel of mixed oxides. On the other hand, high energy projection systems produce dense coatings allowing the Al migration to external alumina layer, particularly in the case of HVOF coating.  相似文献   

12.
High velocity oxygen fuel (HVOF) thermal spray systems are being used to apply coatings to prevent surface degradation. The coatings of temperature sensitive materials such as titanium and copper, which have very low melting points, cannot be applied using a single-stage HVOF system. Therefore, a dual-stage HVOF system has been introduced and modeled computationally. The dual-spray system provides an easy control of particle oxidation by introducing a mixing chamber. In addition to the materials being sprayed, the thermal spray coating quality depends to a large extent on flow behavior of reacting gases and the particle dynamics. The present study investigates the influence of various operating parameters on the performance of a dual-stage thermal spray gun. The objective is to develop a predictive understanding of various parameters. The gas flow field and the free jet are modeled by considering the conservation of mass, momentum, and energy with the turbulence and the equilibrium combustion sub models. The particle phase is decoupled from the gas phase due to very low particle volume fractions. The results demonstrate the advantage of a dual-stage system over a single-stage system especially for the deposition of temperature sensitive materials.  相似文献   

13.
Common thermal-spray techniques use the strong acceleration of powder particles to produce dense ceramic coatings with high bond strength. The residence time of the powder particles within the plasma jet is correspondingly low, and only relatively small particles can be molten. In this work, on the contrary, an inductively coupled radio-frequency (RF) inductively coupled plasma (ICP) torch was used to spray large oxide-ceramic powder particles under atmospheric conditions. The slow plasma flow of a RF plasma leads to large residence times of the powder particles, so that the powder size of the feedstock can be 100 μm and more. It was observed that these particles will not be strongly accelerated in the plasma and that their velocity at the moment of impact is in the range of 10 to 20 m/s. Ceramic coatings were ICP sprayed with a low porosity and a high bond strength, similar to direct current (DC) or high-velocity-oxygen-fuel (HVOF) sprayed coatings. The morphology of ICP-sprayed particles on smooth steel surfaces, as a function of the surface temperature, is described and compared with DC plasma-sprayed splats. Furthermore, the degree of deformation was measured and determined by different models, and the pronounced contact zones formed between the pancake and the substrate were investigated. The ICP-sprayed ceramic coatings show some special properties, such as the absence of metastable crystalline phases, which are common in other spray technologies.  相似文献   

14.
The present paper concerns the determination of mechanical properties such as hardness, elastic modulus and yield strength of WC-based cermet coatings for a roller cylinder. With this regard, Co and Ni containing WC-based coatings were sprayed on Ni-Al deposited 316 L stainless steel substrates by using High Velocity Oxygen Fuel (HVOF) technique. These HVOF sprayed coatings were analyzed by Scanning Electron Microscopy (SEM) with an Energy Dispersive Spectroscopy (EDS) system attachment. Mechanical properties of the coatings were examined by Shimadzu Dynamic Ultra-micro hardness test machine in order to determine the Young's modulus through load-unload sensing analysis. In addition to mechanical investigation, hardness-depth and hardness-force curves of WC-based coatings were investigated. It was found that both of these characteristics exhibit significant peak load dependency. Experimental indentation studies were carried out to determine load-unload curves of WC-Co and WC-Ni based coatings under 300 mN, 350 mN, 400 mN and 450 mN applied peak loads. Hardness and Young's modulus of WC-based coatings were calculated from experimental indentation test data of samples. It has been observed that the hardness and Young's modulus of the coating depends on the contact area and indentation size. The originality of this study is to determine the indentation size effect and contact area variations on mechanical properties of HVOF sprayed WC-based coatings.  相似文献   

15.
316L stainless steel powder was sprayed by a high-pressure high-velocity oxygen fuel (HVOF) process. Effects of powder size and the pressure in the combustion chamber on the velocity and temperature of sprayed particles were studied by using an optical instrument, first, at the substrate position. A strong negative correlation between the particle temperature and the diameter was found, whereas the correlation between the velocity and the diameter was not significant. The pressure in the combustion chamber affected the velocity of sprayed particles significantly, whereas the particle temperature remained largely unchanged. In-situ curvature measurement was employed in order to study the process of stress generation during HVOF spraying. From the measured curvature changes, the intensity of peening action and the resultant compressive stress by HVOF sprayed particles were found to increase with the kinetic energy of the sprayed particles. The results were further used to estimate the stress distribution within the coatings. X-ray stress measurement revealed that the residual stress on the surface of the HVOF coatings is low and often in tension, but the stress inside the coatings is in a high level of compression.  相似文献   

16.
The use of fine feedstock powder can extend the feasibility and scope of HVOF coatings to new fields of applications. Especially for the purpose of near-net-shape coatings, these powders facilitate homogeneous layer morphologies, and smooth coating surfaces. However, the small particle sizes also lead to several challenges. One major issue is the in-flight behavior which is distinctly affected by the low mass and relatively large specific surface of the particles. In this paper, the in-flight and coating characteristics of WC-CoCr 86-10-4 (?10 + 2 μm) were investigated. It was determined that the fine powder feedstock shows a high sensitivity to the gas flow, velocity, and temperature of the spray jet. Because of their low mass inertia, their velocity, for example, is actually influenced by local pressure nodes (shock diamonds) in the supersonic flow. Additionally, the relatively large specific surface of the particles promotes partial overheating and degradation. Nevertheless, the morphological and mechanical properties of the sprayed layer are hardly affected. In fact, the coatings feature a superior surface roughness, porosity, hardness, and wear resistance.  相似文献   

17.
The application of thick high-velocity oxyfuel (HVOF) coatings on metallic parts has been widely accepted as a solution to improve their wear properties. The adherence of these coatings to the substrate is strongly influenced by the residual stresses generated during the coating deposition process. In an HVOF spraying process, due to the relatively low processing temperature, significant peening stresses are generated during impact of molten and semimolten particles on the substrate. At present, finite-element (FE) models of residual stress generation for the HVOF process are not available due to the increased complexities in modeling the stresses generated due to the particle impact. In this work, an explicit FE analysis is carried out to study the effect of molten particle impingement using deposition of an HVOF sprayed copper coating on a copper substrate as an example system. The results from the analysis are subsequently used in a thermomechanical FE model to allow the development of the residual stresses in these coatings to be modeled. This article was originally published inBuilding on 100 Years of Success, Proceedings of the 2006 International Thermal Spray Conference (Seattle, WA), May 15–18, 2006, B.R. Marple, M.M. Hyland, Y.-Ch. Lau, R.S. Lima, and J. Voyer, Ed., ASM International, Materials Park, OH, 2006.  相似文献   

18.
Thermal spray processes are widely used to protect materials and components against wear, corrosion and oxidation. Despite the use of the latest developments of thermal spraying, such as high-velocity oxy-fuel (HVOF) and plasma spraying, these coatings may in certain service conditions show inadequate performance,e.g., due to insufficient bond strength and/or mechanical properties and corrosion resistance inferior to those of corresponding bulk materials. The main cause for a low bond strength in thermalsprayed coatings is the low process temperature, which results only in mechanical bonding. Mechanical and corrosion properties typically inferior to wrought materials are caused by the chemical and structural inhomogeneity of the thermal-sprayed coating material. To overcome the drawbacks of sprayed structures and to markedly improve the coating properties, laser remelting of sprayed coatings was studied in the present work. The coating material was nickel-based superalloy Inconel 625, which contains chromium and molybdenum as the main alloying agents. The coating was prepared by HVOF spraying onto mild steel substrates. High-power continuous wave Nd:YAG laser equipped with large beam optics was used to remelt the HVOF sprayed coating using different levels of power and scanning speed. The coatings as-sprayed and after laser remelting were characterized by optical microscopy and scanning electron microscopy (SEM). Laser remelting resulted in homogenization of the sprayed structure. This strongly improved the performance of the laser-remelted coatings in adhesion, wet corrosion, and high-temperature oxidation testing. The properties of the laser-remelted coatings were compared directly with the properties of as-sprayed HVOF coatings and with plasma-transferred arc (PTA) overlay coatings and wrought Inconel 625 alloy.  相似文献   

19.
In the present work, the elaboration of nanostructured alumina and titania coatings by thermal spraying with liquid precursors is described. Nano- and submicrometer-sized powders were used to prepare aqueous or alcoholic suspensions. The suspensions were sprayed using APS and HVOF processes in order to obtain thin and thick deposits. The paper discusses the coating microstructures as a function of suspension characteristics and spray parameters in both APS and HVOF processes.  相似文献   

20.
The warm spray (WS) gun was developed to make an oxidation-free coating of temperature-sensitive material, such as titanium and copper, on a substrate. The gun has a combustion chamber followed by a mixing chamber, in which the combustion gas is mixed with the nitrogen gas at room temperature. The temperature of the mixed gas can be controlled in the range of about 1000-2500 K by adjusting the mass flow rate of nitrogen gas. The gas in the mixing chamber is accelerated to supersonic speed through a converging-diverging nozzle followed by a straight barrel. This paper shows how to construct the mathematical model of the gas flow and particle velocity/temperature of the WS process. The model consists of four parts: (a) thermodynamic and gas-dynamic calculations of combustion and mixing chambers, (b) quasi-one-dimensional calculation of the internal gas flow of the gun, (c) semiempirical calculation of the jet flow from the gun exit, and (d) calculation of particle velocity and temperature traveling in the gas flow. The validity of the mathematical model is confirmed by the experimental results of the aluminum particle sprayed by the WS gun.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号