首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 701 毫秒
1.
Allergy to indoor allergens can cause frequent and severe health problems in children. Because little is known about the content of allergens in the indoor environments in Norway, we wanted to assess the levels of cat, dog and mite allergens in schools and day-care centers in Oslo. Allergen levels in dust samples from 155 classrooms and 81 day-care units were measured using commercially available enzyme-linked immunosorbent assay (ELISA) kits. Additionally, we measured the levels of endotoxin in 31 day-care units, using the limulus amebocyte lysate test. Most of the dust samples contained detectable amounts of cat and dog allergens. In mattress and floor dust (day-care centers), and curtain and floor dust (schools) the median Fel d 1 levels were 0.17, 0.002, 0.02 and 0.079 microg/m2, while the median Can f 1 levels were 1.7, 0.03, 0.1 and 0.69 microg/m2, respectively. Levels of cat and dog allergens in school floor dust were associated with the number of pupils with animals at home. In contrast, <1% of the samples had measurable levels of the mite allergen Der p 1. Moreover, the levels of endotoxin tended to be higher in dust from floors (1.4 ng/m2) compared with that from mattresses (0.9 ng/m2). PRACTICAL IMPLICATIONS: To reduce allergen exposure, allergic individuals should be placed in the classes/rooms with the fewest pet owners. Moreover, mattresses in day-care centers are major reservoirs of cat and dog allergens and should be cleaned frequently.  相似文献   

2.
INTRODUCTION: Cat allergen is a major cause of morbidity among sensitised asthma patients, but little is known about distribution of cat allergen exposure and its determinants in homes. METHODS: We measured cat allergen and potential determinants of cat allergen levels in more than 1000 homes. House dust was collected from children's mattresses and living room floors in approximately 360 homes in The Netherlands, Sweden and Germany and analysed for Fel d 1 in one central laboratory. Exposure was expressed both in concentration (ng/g) and in loads (ng/m2). RESULTS: Levels on mattresses were similar in Sweden and Germany but higher on Dutch mattresses. Dutch floors had higher concentrations than Swedish floors, which had higher concentrations than German floors. The differences in load were less clear. Cat allergen on mattress and floor were moderately to highly correlated. The most important variable quantifying cat allergen variation was the presence of a cat. Floor cover type and last time that floor was vacuumed were important in all three countries. The ratio of cat allergen loads between mattresses from homes with and without cats was higher for Sweden and Germany than for The Netherlands. This is likely related to higher prevalence of cat ownership in The Netherlands which leads to more contamination of homes in which cats were never held. Dust samples from 27-35% of mattresses from homes without cats contained more than 1000 ng/g cat allergen. CONCLUSION: With the exception of cat ownership and floor cover, questionnaire data on housing characteristics did not accurately predict cat allergen in the home.  相似文献   

3.
Studies that estimate indoor aeroallergen exposure typically measure a pre‐selected limited range of allergens. In this study, inhalable aeroallergen particles were quantified using the halogen immunoassay (HIA) to determine the contribution of fungal and non‐fungal aeroallergens to total allergen exposure. Bioaerosols from 39 homes of fungal‐allergic subjects were sampled using inhalable fraction samplers and immunostained by HIA using resident subject's immunoglobulin E (IgE) to detect allergen‐laden particles. Fungal aerosols as well as particles carrying mite, cat, and cockroach allergens were identified and enumerated by HIA. Reservoir dust‐mite (Der p 1), cat (Fel d 1), and cockroach (Bla g 1) allergen concentrations were quantified by ELISA. Fungal particles that bound subject's IgE in the HIA were 1.7 (bedroom)‐ and 1.4 (living room)‐fold more concentrated than Der p 1, Fel d 1, and Bla g 1 allergen particles combined. Predominant fungal conidia that bound IgE were derived from common environmental genera including Cladosporium and other fungi that produce amerospores. Airborne mite, cat, and cockroach allergen particle counts were not associated with reservoir concentrations determined by ELISA. This study demonstrates that inhalable fungal aerosols are the predominant aeroallergen sources in Sydney homes and should be considered in future exposure assessments.  相似文献   

4.
Indoor environment has been associated with allergic disease. Further, it has been observed that the prevalences of allergic sensitization are different in different social groups. We therefore investigated the association between socioeconomic status (SES) and indoor bio-contaminants. House dust samples were collected from parents' and infants' mattress from 2166 families in Munich (62.2%) and Leipzig (37.8%), Germany. Major mite allergen Der p 1 and Der f 1, cat allergen Fel d 1, and endotoxin were extracted and quantified. Parental educational level and family equivalent income were used independently as socioeconomic indicators. Indoor endotoxin, mite allergen Der p 1, and the amount of sampled dust were not associated with the social factors. Mite allergen Der f 1 was slightly associated by family SES but without a consistent pattern. In families who are not cat owners, however, a negative association between the amount of cat allergen and family SES were observed. The observed negative association between cat allergen loads and concentrations in mattress and family SES in non-cat owners' homes indicated that community is an important source of cat allergen exposure. PRACTICAL IMPLICATIONS: The study indicated that community is a major source of cat allergen exposure especially in communities of low SES.  相似文献   

5.
The aim was to study asthma and allergy in relation to diet and the school environment. Pupils (5-14 years) in eight schools received a questionnaire, 1014 participated (68%). Settled dust was collected on ALK-filters and analyzed for allergens from cat (Fel d 1), dog (Can f 1), horse (Equ cx), house dust mites (Der p 1, Der f 1), and cockroach (Bla g 1) by ELISA. In total, 6.8% reported cat allergy, 4.8% dog allergy, 7.7% doctor's diagnosed asthma and 5.9% current asthma, and 7.8% reported wheeze. Current asthma was less common among those consuming more fresh milk (P < 0.05) and fish (P < 0.01). Poly-unsaturated fatty acids was associated with more wheeze (P < 0.05), olive oil was associated with less doctors' diagnosed asthma (P < 0.05). Totally, 74% of the classrooms had mean CO(2) <1000 ppm. The median concentration per gram dust was 860 ng/g Fel d 1, 750 ng/g Can f 1 and 954 U/g Equ cx. Horse allergen was associated with more wheeze (P < 0.05), daytime breathlessness (P < 0.05), current asthma (P < 0.05) and atopic sensitization (P < 0.05). Dog allergen was associated with wheeze (P < 0.05) and daytime breathlessness (P < 0.05). The associations between allergens and respiratory symptoms were more pronounced among those consuming margarine, not consuming butter, and with a low intake of milk. In conclusion, cat, dog and horse allergens in schools could be a risk factor for asthma and atopic sensitization, and dietary factors may interact with the allergen exposure. PRACTICAL IMPLICATIONS: Previous school studies performed by us in mid-Sweden, showed that most classrooms did not fulfill the ventilation standards. In this study, most of the classrooms fulfilled the ventilation standard, but despite that had widespread allergen contamination. Most previous studies have focused on cat allergen, but our study has shown that also dog and horse allergens can be risk factors for asthma and allergy in schools. As allergens are transported from other environments, mainly the home environment, the main prevention should be to minimize transfer of allergens. This could be achieved by reducing contacts with furry pets and horses, or using different clothes at home and at school (e.g. school uniforms). Increased cleaning in the schools may reduce allergen levels, but the efficiency of this measure must be evaluated in further intervention studies. Finally, our study supports the view that dietary habits among pupils should not be neglected and interaction between dietary factors and indoor allergen exposure needs to be further investigated.  相似文献   

6.
Exposure to house dust has been associated with asthma in adults, and this is commonly interpreted as a direct immunologic response to dust‐mite allergens in those who are IgE sensitized to house dust‐mite. Mattress house dust‐mite concentrations were measured in a population‐based sample of 2890 adults aged between 27 and 56 years living in 22 centers in 10 countries. Generalized linear mixed models were employed to explore the association of respiratory symptoms with house dust‐mite concentrations, adjusting for individual and household confounders. There was no overall association of respiratory outcomes with measured house dust‐mite concentrations, even in those who reported they had symptoms on exposure to dust and those who had physician‐diagnosed asthma. However, there was a positive association of high serum specific IgE levels to HDM (>3.5 kUA/l) with mattress house dust‐mite concentrations and a negative association of sensitization to cat with increasing house dust‐mite concentrations. In conclusion, there was no evidence that respiratory symptoms in adults were associated with exposure to house dust‐mite allergen in the mattress, but an association of house mite with strong sensitization was observed.  相似文献   

7.
We designed and tested a sampling and analysis system for quantitative measurement of airborne cockroach allergen with sufficient sensitivity for residential exposure assessment. Integrated 1-week airborne particle samples were collected at 10-15 LPM in 19 New York City apartments in which an asthmatic child who was allergic to cockroach allergen resided. Four simultaneous air samples were collected in each home: at heights of 0.3 and 1 m in the child's bedroom and in the kitchen. Extracts of air samples were analyzed by ELISA for the cockroach allergen Bla g2, modified by amplifying the colorimetric signal generated via use of AMPLI-Q detection system (DAKO Corporation, Carpinteria, CA, USA). Settled dust samples were quantified by conventional ELISA. Of the homes where cockroach allergen was detected in settled dust, Bla g2 also was detected in 87% and 93% of air samples in the bedroom and kitchen, respectively. Airborne Bla g2 levels were highly correlated within and between the bedroom and kitchen locations (P < 0.001). Expressed as picogram per cubic meter, the room average geometric mean for Bla g2 concentrations was 1.9 pg/m3 (95% CI 0.63, 4.57) and 3.8 pg/m3 (95% CI 1.35, 9.25) in bedrooms and kitchens, respectively. This method offers an attractive supplement to settled dust sampling for cockroach allergen exposure health studies. PRACTICAL IMPLICATIONS: Until now, cockroach allergen exposures have usually been assessed by collection and analysis of settled dust, on the assumption that airborne cockroach allergen cannot be reliably measured. In this study, a sensitive and quantitative method for measuring indoor airborne exposures to cockroach allergens involving a 7-day integrated total suspended particulate (TSP) sample collected at approximately 10-15 l/min was developed. Investigators are now empowered with an alternative exposure assessment method to supplement their studies and the understanding of allergen aerodynamics in the homes of children with asthma. We report airborne cockroach allergen in apartments, suggesting an ongoing burden of inhalation exposure.  相似文献   

8.
BACKGROUND: Exposure to indoor allergens has already been shown to occur in many public places, including workplaces, in several countries. Aim of this study was to measure the levels of house dust mites, cat and cockroach allergens in indoor workplaces (offices and archives) in Italy and to evaluate the possible relationships between allergen levels and building characteristics, type of ventilation, indoor relative humidity and temperature. METHODS: Der f 1 and Der p 1, Fel d 1, Bla g 2 were measured by ELISA in dust samples collected from floors or upholstered seats of 160 workplaces. RESULTS: Detectable Der p 1 levels were found in 86 (54%) workplaces Der f 1 in 87 (55%), Fel d 1 in 86 (54%) and Bla g 2 in 3 (1.9%). Der p 1 allergen concentrations expressed per weight were higher than the proposed sensitization thresholds in 7 samples, Der f 1 in 5, Fel d 1 in 6 and Bla g 2 in 3. The highest allergen levels were detected in samples from upholstered seats. A significant correlation was found between Der f 1 level on floors, expressed per surface, and indoor temperature (r = 0.39; P < 0.01). CONCLUSIONS: In our study we found that upholstered seats in workplaces in Italy may constitute a significant reservoir both of house dust mites and cat allergens. Exposure to these allergens in workplaces may represent a risk factor for elicitation of symptoms and/or induction/maintenance of inflammation in allergic individuals and might also constitute a risk factor for sensitization.  相似文献   

9.
This study aimed to clarify the determinants that affect the concentrations of ergosterol and viable fungi in house dust and to examine the seasonal variation and reproducibility of ergosterol concentrations indoors. In studying the determinants, dust samples from living room floors and vacuum cleaner dust bags were collected from 107 farming and 105 non‐farming homes. Ergosterol levels were determined with gas chromatography‐mass spectrometry, and the dust bag dust was cultivated for enumeration of fungal genera. Lifestyle and environmental factors, for example using of the fireplace, and visible mold observations in homes, explained 20–26% of the variation of fungal concentrations. For the reproducibility study, samples were collected from five urban homes in four different seasons. The reproducibility of ergosterol determinations within a sample was excellent (ICC = 89.8) for floor dust and moderate (ICC = 63.8) for dust bag dust, but poor when sampling the same home throughout a year (ICC = 31.3 and 12.6, respectively) due to large temporal variation in ergosterol concentrations. In conclusion, environmental characteristics only partially predicted the variation of fungal concentrations. Based on these studies, we recommend repeated sampling of dust over time if one seeks to adequately describe overall fungal levels and exposure in a home.  相似文献   

10.
Previous studies have suggested that exposure to cats and dogs during early childhood reduces the risk of allergic disease, possibly by increasing home endotoxin exposure. This study asked the question of whether cats and dogs are the dominant influence on dust endotoxin concentrations in homes after considering other variables reportedly associated with endotoxin. The presence of cats or dogs in homes, household and home characteristics, and dust endotoxin concentrations from 5 locations were assessed in 966 urban and suburban homes. Whether considered together as pets or as cats and dogs separately, the presence of cats and dogs significantly contributed to living room and bedroom floor endotoxin concentrations, but not to bed endotoxin concentrations. However, the two variables consistently related to endotoxin in all home sites were the home occupant density (occupants/room) and cleanliness of the home. Our data suggest that reducing occupant density and improving home cleanliness would reduce home endotoxin concentrations more than removing pet cats or dogs from the home.  相似文献   

11.
We aimed to characterize the presence of microbial secondary metabolites in homes and their association with moisture damage, mold, and asthma development. Living room floor dust was analyzed by LC‐MS/MS for 333 secondary metabolites from 93 homes of 1‐year‐old children. Moisture damage was present in 15 living rooms. At 6 years, 8 children had active and 15 lifetime doctor‐diagnosed asthma. The median number of different metabolites per house was 17 (range 8–29) and median sum load 65 (4–865) ng/m2. Overall 42 different metabolites were detected. The number of metabolites present tended to be higher in homes with mold odor or moisture damage. The higher sum loads and number of metabolites with loads over 10 ng/m2 were associated with lower prevalence of active asthma at 6 years (aOR 0.06 (95% CI <0.001–0.96) and 0.05 (<0.001–0.56), respectively). None of the individual metabolites, which presence tended (P < 0.2) to be increased by moisture damage or mold, were associated with increased risk of asthma. Microbial secondary metabolites are ubiquitously present in home floor dust. Moisture damage and mold tend to increase their numbers and amount. There was no evidence indicating that the secondary metabolites determined would explain the association between moisture damage, mold, and the development of asthma.  相似文献   

12.
Kim JL  Elfman L  Norbäck D 《Indoor air》2007,17(2):122-129
We studied reports on respiratory symptoms, asthma and atopic sensitisation in relation to allergen contamination in Korean schools and compared with data from a previous Swedish study performed in eight primary schools. Korean pupils (n = 2365) in 12 primary schools first completed a questionnaire. Then airborne and settled dust were collected from 34 classrooms and analyzed for allergens by ELISA. In both countries, boys reported more symptoms. The prevalence of wheeze was similar, while daytime [odds ratio (OR) = 14.0, 95% confidence interval (CI) = 9.0-21.9] and nocturnal breathlessness (OR = 3.1, 95% CI = 1.5-6.4) were much higher among Korean students. In Korean schools, dog allergen (Can f 1) was the most common followed by mite allergen (Der f 1), while cat (Fel d 1), dog, and horse allergen (Equ cx) were abundant in Sweden. Moreover, CO(2) levels were high in most Korean schools (range 907-4113 ppm). There was an association between allergen levels in dust and air samples, and number of pet-keepers in the classrooms. In conclusion, allergen contamination in Korean schools may be an important public issue. PRACTICAL IMPLICATIONS: This study showed that furry pet allergen contamination was common in both Korean and Swedish schools. In addition, house dust-mite (Der f 1) allergen contamination was common in Korean schools, probably because of transport of allergen from other environments. Transfer should therefore be minimized. Korean schools had high CO(2) levels and the concept of mechanical ventilation should be introduced. Measurement of airborne allergen levels is quite new and seems to be a more convenient and correct way to monitor allergen exposure in classrooms.  相似文献   

13.
In addition to mold, indoor bioaerosols also contain bacterial components that may have implications for human health. Endotoxin is a cell wall component in Gram-negative bacteria present at varying levels indoors that has been found to have respiratory health implications. Streptomyces is a large genus of Gram-positive bacteria, and some species have been shown to produce inflammatory reactions in vitro and in vivo. The aim of this study was to determine predictors of streptomycetes levels in house dust and to compare the variation in streptomycetes levels with that in endotoxin levels. Dust was collected by floor vacuuming from 178 homes in the Cincinnati metropolitan area. Streptomycetes levels were measured by quantitative PCR, and endotoxin was assayed by the Limulus amebocyte lysate method. Associations between home characteristics and bacterial contaminants, expressed as concentration and load, were investigated through multiple regression analyses. The presence of two or more dogs was a strong predictor of both streptomycetes and endotoxin levels. Season of dust collection and levels of outdoor molds were predictors of streptomycetes but not endotoxin levels. In contrast, number of inhabitants was a significant predictor of endotoxin load only. Neither streptomycetes nor endotoxin levels were associated with metrics of moisture damage.  相似文献   

14.
Considering that high school students spend a large proportion of their waking hours in the school environment, this could be an important location for exposure to indoor allergens. We have investigated the levels of mouse and cockroach allergens in the settled dust and air from 11 schools in a major northeastern US city. Settled dust samples were vacuumed from 87 classrooms, three times throughout the school year. Two separate air samples (flow = 2.5 lpm) were collected by 53 students over a 5-day period from both their school and their home. Mouse allergen (MUP) in the dust varied greatly between schools with geometric means ranging from 0.21 to 133 microg/g. Mouse allergen was detectable in 81% of the samples collected. Cockroach allergen (Bla g 2) ranged from below limit of detection (<0.003 microg/g) to 1.1 microg/g. Cockroach allergen was detected (>0.003 microg/g) in 71% of the dust samples. Bla g 2 was detected in 22% of airborne samples from the schools. By comparison, mouse allergen was only detected in 5%. These results indicate that the school may be an important location for exposure to allergens from mice and cockroaches and is an indoor environment that should be considered in an overall allergen intervention strategy. PRACTICAL IMPLICATIONS: To date, cockroach and mouse allergen intervention strategies have been mainly focused on the home environment. Considering that children spend a significant amount of time in schools, some studies have assessed cockroach allergen levels in schools. This study provides a clearer picture of the distribution and variability of not only cockroach allergen, but also mouse allergen in the school environment. In addition, this study describes limitations of personal air sampling in a student population. Our results suggest that although cockroach and mouse allergens are commonly recovered in classroom dust samples of inner city schools, cockroach allergens are recovered in the personal air samples with a greater frequency relative to mouse allergens.  相似文献   

15.
Variations in home characteristics, such as moisture and occupancy, affect indoor microbial ecology as well as human exposure to microorganisms. Our objective was to determine how indoor bacterial and fungal community structure and diversity are associated with the broader home environment and its occupants. Next‐generation DNA sequencing was used to describe fungal and bacterial communities in house dust sampled from 198 homes of asthmatic children in southern New England. Housing characteristics included number of people/children, level of urbanization, single/multifamily home, reported mold, reported water leaks, air conditioning (AC) use, and presence of pets. Both fungal and bacterial community structures were non‐random and demonstrated species segregation (C‐score, < 0.00001). Increased microbial richness was associated with the presence of pets, water leaks, longer AC use, suburban (vs. urban) homes, and dust composition measures (< 0.05). The most significant differences in community composition were observed for AC use and occupancy (people, children, and pets) characteristics. Occupant density measures were associated with beneficial bacterial taxa, including Lactobacillus johnsonii as measured by qPCR. A more complete knowledge of indoor microbial communities is useful for linking housing characteristics to human health outcomes. Microbial assemblies in house dust result, in part, from the building's physical and occupant characteristics.  相似文献   

16.
The comparison of endotoxin levels between study populations and countries is limited as a result of differences in sampling, extraction, and storage procedures. The objective of this study is to assess the levels and determinants of endotoxin in mattress and living room floor dust samples from three European countries, namely, Germany, the Netherlands, and Sweden, using a standardized sampling, storage, and analysis protocol. The mattress and living room floor dust was collected from the homes of 1065 German, Dutch, and Swedish (pre-)school children. All the samples were collected in the cool season and analyzed for endotoxin in a central laboratory. The determinants were assessed by a standardized questionnaire. The endotoxin concentrations in mattress and living room floor dust were found to be the highest in German homes and lowest in the Swedish ones. Differences between the geometric means were small (factor 1.1-1.7). Most of the associations between endotoxin concentrations and potential determinants were not statistically significant and heterogeneous across countries. However, keeping pets and having more than four persons living in the home were consistently associated with up to 1.7-fold higher endotoxin concentrations in mattress and floor dust. Furthermore, having carpets or rugs, and opening the windows frequently was associated with up to 3.4-fold and 1.3-fold higher endotoxin concentrations in living room floor dust, respectively. The proportion of variance explained by the questionnaire variables was generally low. In conclusion, the data on housing characteristics did not accurately predict the endotoxin concentrations in house dust, and could only partly explain the differences between countries. PRACTICAL IMPLICATIONS: The differences between the endotoxin concentrations in German, Dutch, and Swedish homes are small. House dust endotoxin concentrations are associated with a number of housing factors, such as pet-ownership, floor cover, number of persons living in the home, and ventilation. The variability of the endotoxin levels between homes and countries can only be partly explained by these factors.  相似文献   

17.
Allergens in indoor air: environmental assessment and health effects   总被引:2,自引:0,他引:2  
It has been suggested that the increase in morbidity and mortality for asthma and allergies, may also be due to an increase in exposure to allergens in the modern indoor environment. Indoor allergen exposure is recognised as the most important risk factor for asthma in children. House dust mites, pets, insects, plants, moulds and chemical agents in the indoor environment are important causes of allergic diseases. House dust mites and their debris and excrements that contain the allergens are normally found in the home in beds, mattresses, pillows, carpets and furniture stuffing, but they have also been found in office environments. Domestic animals such as cats, dogs, birds and rodents may cause allergic asthma and rhinoconjunctivitis. The exposure usually occurs in homes, but also in schools and kindergartens where domestic animals are kept as pets or for education; moreover, cat and dog owners can bring allergens to public areas in their clothes. Allergy to natural rubber latex has become an important occupational health concern in recent years, particularly among healthcare workers; when powdered gloves are worn or changed, latex particles get into the air and workers are exposed to latex aerosolised antigens. To assess the environmental risk to allergen exposure or to verify if there is a causal relationship between the immunologic findings in a patient and his/her environmental exposure, sampling from the suspected environment may be necessary.  相似文献   

18.
Allergen exposure is a risk to develop an IgE-mediated sensitization. The amount of allergen inhaled per unit time should be related to the amount present in the air, i.e. airborne allergen. Thus, measuring allergen levels in the air would be more relevant than measuring allergen levels in dust. Allergens are present in the air in very minute quantities and usually become airborne after disturbance. Large variation of allergen levels have been found in dust. In this study, we measured variability of airborne cat allergen, Fel d1, in a public place using a high-volume air-sampler. We also studied the distribution and relationship between dust and airborne cat allergens in homes and schools. Air samples were collected at three different airflow rates, i.e. 55, 40, and 30 m3 of air per hour. The concentration of airborne Fel d1 in the community gymnastic hall varied from 1 to 10 pg/m3 within a period of 3 weeks, at airflow rates 55-30 m3/h. The coefficient of variation for repeated samplings was 14-43% (day-to-day variation) and 27-38% (within-day variation). As expected, higher levels of airborne cat allergens were found in homes with cats than in cat-free environments. There was a significant relationship between cat allergen levels in dust and air (r=0.7, P<0.01). Our study demonstrates that when measuring airborne cat allergen a large variation is observed within a day and between days. The large variability of measurement may be explained by the disturbance in the environments. We suggest, that when exposure assessment is made the environment in question should be analyzed, if possible in several occasions.  相似文献   

19.
Abstract Residential microbial exposure has been suggested to be involved in the development of asthma. This paper describes bacterial endotoxin and mold β(1→3)-glucan levels in house dust and the relationship to selected home characteristics. Dust was sampled from mattresses and living room and bedroom floors of 25 houses in Germany. Endotoxin and β(1→3)-glucan levels ranged from 200-48,600 EU/g dust (100-32,900 EU/m2 sampled surface) and 182-3,507 μg/g (157-3,652 μg/m2), respectively. Bio-contaminant levels were highest on living room floors and lowest in mattresses. Dust, endotoxin and β(1→3)-glucan levels were 2–3 times higher on living room floors of centrally heated houses built after 1970 compared to older individually heated houses. This was not found for mattresses and bedroom floors. No associations between biocontaminant levels and other selected home characteristics (temperature, relative humidity, damp spots and insulation of windows) were found. β(1→3)-glucan levels were associated with total culturable fungi (per m2) in house dust, as well as with the fungal genus Alternaria (per g dust and per m2). In conclusion endotoxin and β(1→3)-glucan were readily detectable in house dust and significantly associated with heating system and/or age of the home.  相似文献   

20.
Distribution variations of multi allergens at asthmatic children's homes   总被引:1,自引:0,他引:1  
Increasing asthma prevalence is evident in many countries and childhood asthma has also become one of the most common chronic diseases in children. Exposure to indoor allergens has been be attributed to a significant increase in asthma occurrence. Meanwhile, allergen distribution varies widely among different countries. This brief investigation reports the distribution of common indoor allergens, such as mite (Dermatophagoides pteronyssinus, Der p 1 and Der p 2), cat (Felis domesticus, Fel d 1), and German cockroach allergens (Blattella germanica, Bla g 1) at different sites of asthmatic children in Taiwan. Approximately 40 asthmatic children's homes participated in this study and the cohort was followed prospectively for approximately 6 months, starting in December until the following May. Dust samples were collected from each child's mattress, and bedroom and living room floors. All samples were analyzed with monoclonal antibody-based enzyme-linked immunosorbent assay (ELISA). Statistical difference of Der p 1 concen trations is observed among those on the mattress, bedroom and living room floor, except for in May. Seasonal variation in Der p 1 levels on the mattress and bedroom floor is also significant (P < 0.025 and 0.001, respectively). Distributional variation seems to be significant for most allergens among sites within homes in most seasons. Therefore, if only one sample is to be taken, the month of May would be a more ideal choice of study period, and detailed sampling across sites appears to be necessary should the true environmental exposure of allergens be desired.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号