首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Remote sensing data from both Landsat 5 and Landsat 7 systems were utilized to assess urban area thermal characteristics in Tampa Bay watershed of west-central Florida, and the Las Vegas valley of southern Nevada. To quantitatively determine urban land use extents and development densities, sub-pixel impervious surface areas were mapped for both areas. The urban-rural boundaries and urban development densities were defined by selecting certain imperviousness threshold values and Landsat thermal bands were used to investigate urban surface thermal patterns. Analysis results suggest that urban surface thermal characteristics and patterns can be identified through qualitatively based urban land use and development density data. Results show the urban area of the Tampa Bay watershed has a daytime heating effect (heat-source), whereas the urban surface in Las Vegas has a daytime cooling effect (heat-sink). These thermal effects strongly correlated with urban development densities where higher percent imperviousness is usually associated with higher surface temperature. Using vegetation canopy coverage information, the spatial and temporal distributions of urban impervious surface and associated thermal characteristics are demonstrated to be very useful sources in quantifying urban land use, development intensity, and urban thermal patterns.  相似文献   

2.
Thermal remote sensing of urban climates   总被引:30,自引:0,他引:30  
  相似文献   

3.
The influence of zoning on Normalized Difference Vegetation Index (NDVI) and radiant surface temperature (Ts) measurements is investigated in the City of Indianapolis, IN, USA using data collected by the Enhanced Thematic Mapper Plus (ETM+) remote sensing system. Analysis of variance indicates statistically significant differences in mean Ts and NDVI values associated with different types of zoning. Multiple comparisons of mean Ts and NDVI values associated with specific pairings of individual zoning categories are also shown to be significantly different. An inverse relationship between Ts and NDVI was observed across the city as a whole and within all but one zoning category. A range of environmental influences on sensible heat flux and urban vegetation was detected both within and between individual zoning categories. Examples for implementing these findings in urban planning applications to find examples of high and low impact development are demonstrated.  相似文献   

4.
Impervious surface area (ISA) from the Landsat TM-based NLCD 2001 dataset and land surface temperature (LST) from MODIS averaged over three annual cycles (2003-2005) are used in a spatial analysis to assess the urban heat island (UHI) skin temperature amplitude and its relationship to development intensity, size, and ecological setting for 38 of the most populous cities in the continental United States. Development intensity zones based on %ISA are defined for each urban area emanating outward from the urban core to the non-urban rural areas nearby and used to stratify sampling for land surface temperatures and NDVI. Sampling is further constrained by biome and elevation to insure objective intercomparisons between zones and between cities in different biomes permitting the definition of hierarchically ordered zones that are consistent across urban areas in different ecological setting and across scales.We find that ecological context significantly influences the amplitude of summer daytime UHI (urban-rural temperature difference) the largest (8 °C average) observed for cities built in biomes dominated by temperate broadleaf and mixed forest. For all cities combined, ISA is the primary driver for increase in temperature explaining 70% of the total variance in LST. On a yearly average, urban areas are substantially warmer than the non-urban fringe by 2.9 °C, except for urban areas in biomes with arid and semiarid climates. The average amplitude of the UHI is remarkably asymmetric with a 4.3 °C temperature difference in summer and only 1.3 °C in winter. In desert environments, the LST's response to ISA presents an uncharacteristic “U-shaped” horizontal gradient decreasing from the urban core to the outskirts of the city and then increasing again in the suburban to the rural zones. UHI's calculated for these cities point to a possible heat sink effect. These observational results show that the urban heat island amplitude both increases with city size and is seasonally asymmetric for a large number of cities across most biomes. The implications are that for urban areas developed within forested ecosystems the summertime UHI can be quite high relative to the wintertime UHI suggesting that the residential energy consumption required for summer cooling is likely to increase with urban growth within those biomes.  相似文献   

5.
This study intends to explore the spatial analytical methods to identify both general trends and more subtle patterns of urban land changes. Landsat imagery of metropolitan Kansas City, USA was used to generate time series of land cover data over the past three decades. Based on remotely sensed land cover data, landscape metrics were calculated. Both the remotely sensed data and landscape metrics were used to characterize long-term trends and patterns of urban sprawl. Land cover change analyses at the metropolitan, county, and city levels reveal that over the past three decades the significant increase of built-up land in the study area was mainly at the expense of non-forest vegetation cover. The spatial and temporal heterogeneity of the land cover changes allowed the identification of fast and slow sprawling areas. The landscape metrics were analyzed across jurisdictional levels to understand the effects of the built-up expansion on the forestland and non-forest vegetation cover. The results of the analysis suggest that at the metropolitan level both the areas of non-forest vegetation and the forestland became more fragmented due to development while large forest patches were less affected. Metrics statistics show that this landscape effect occurred moderately at the county level, while it could be only weakly identified at the city level, suggesting a scale effect that the landscape response of urbanization can be better revealed within larger spatial units (e.g., a metropolitan area or a county as compared to a city). The interpretation of the built-up patch density metrics helped identify different stages of urbanization in two major urban sprawl directions of the metropolitan area. Land consumption indices (LCI) were devised to relate the remotely sensed built-up growth to changes in housing and commercial constructions as major driving factors, providing an effective measure to compare and characterize urban sprawl across jurisdictional boundaries and time periods.  相似文献   

6.
We examined the spatial and temporal variability of the Secchi Disk Depth (SDD) within Tampa Bay, Florida, using the Sea-viewing Wide Field-of-View Sensor (SeaWiFS) satellite imagery collected from September 1997 to December 2005. SDD was computed using a two-step process, first estimating the diffuse light attenuation coefficient at 490 nm, Kd(490), using a semi-analytical algorithm and then SDD using an empirical relationship with Kd(490). The empirical SDD algorithm (SDD = 1.04 × Kd(490)− 0.82, 0.9 < SDD < 8.0 m, r2 = 0.67, n = 80) is based on historical SDD observations collected by the Environmental Protection Commission of Hillsborough County (EPCHC) in Tampa Bay. SeaWiFS derived SDD showed distinctive seasonal variability, attributed primarily to chlorophyll concentrations and color in the rainy season and to turbidity in the dry season, which are in turn controlled by river runoff and winds or wind-induced sediment resuspension, respectively. The Bay also experienced strong interannual variability, mainly related to river runoff variability. As compared to in situ single measurements, the SeaWiFS data provide improved estimates of the “mean” water clarity conditions in this estuary because of the robust, frequent, and synoptic coverage. Therefore we recommend incorporation of this technique for routine monitoring of water quality in coastal and large estuarine waters like Tampa Bay.  相似文献   

7.
水利部旱情遥感监测系统建设与展望   总被引:1,自引:0,他引:1  
遥感技术以其快速、经济和大空间范围获取的特点,已成为旱情监测的重要手段。介绍国家防汛指挥系统二期工程水利部旱情遥感监测系统的建设情况,包括旱情遥感监测模型、业务流程及系统的设计与开发等。系统实现全国旱情监测逐周生产、区域旱情1~3 d应急快速监测及逐月区域水体监测产品的生产。试运行表明全国旱情监测与国外同类产品结果一致或优于同类产品;区域旱情监测平均精度达到80%以上。最后,对旱情遥感监测系统未来发展进行展望。  相似文献   

8.
About 20% of the final energy consumed in Europe is used in buildings. The active and passive use of solar energy is an approach to reduce the fossil energy consumption and the greenhouse gas emissions originated by buildings. Consideration of solar energy technologies in urban planning demands accurate information of the available solar resources. This can be achieved by the use of remote sensing data from geostationary satellites which show a very high spatial and a sufficient temporal resolution compared to ground station data. This paper gives a brief introduction to the HELIOSAT method applied to derive surface solar irradiance from satellite images and shows examples of applications: The use of daylight in buildings, the generation of correlated time series of solar irradiance and temperature as input data for simulations of solar energy systems and a short-term forecast of solar irradiance which can be used in intelligent building control techniques. Finally an outlook is given on potential improvements expected from the next generation of European meteorological satellites Meteosat Second Generation (MSG).  相似文献   

9.
Information about the extent of impervious surface and its rate of development is a valuable indicator of urban growth and environmental quality and thus relevant for a wide range of research related to urban ecosystems. Using SPOT-5 data from 2005 to 2009, impervious surface was estimated at a subpixel level for the area of Can Tho province in the Mekong Delta, based on a Support Vector Regression model. Training data comprised a set of SPOT-5 reflectance values each associated with an individual value of subpixel imperviousness as their respective labels. The latter were obtained on the basis of a land cover map, which in turn was derived from a pansharpened QB subset by means of an object-oriented image classification approach. In addition, by varying different sets of training data in the model building process the spectral interrelationships between the urban land cover classes (water, bare soil, vegetation, and impervious surface) and their effect on the estimation of subpixel imperviousness could be examined. In order to exclude irrelevant areas (natural/undeveloped land) from the impervious surface estimation process, single-polarised TerraSAR-X data were used to delineate settlement areas by an object-oriented image classification approach. Furthermore, a change detection method was applied for the respective time period in order to test the suitability of the approach for the automated detection of structural developments within the urban topography. Settlement areas were correctly identified with overall accuracies between 81% and 94%, whilst the comparison of the modelled impervious estimates to the training values gave an absolute mean error below 15%. The results prove the suitability of the approach for an area-wide but selective mapping and monitoring of impervious surface cover within settlement areas only.  相似文献   

10.
西宁和拉萨城市作为青藏高原人类活动的热点地区,其发展历程对青藏高原社会经济发展具有重要影响。研究基于遥感影像、城市规划图和历史地图等资料重建了西宁和拉萨城市1949基准年、1978基准年、1990年、2000年、2010年和2018年城市扩展及2000年以来城市不透水层和绿地空间组分数据,分析了1949基准年以来西宁和拉萨主城区城市扩展的时空特征,揭示了社会经济因素和政策因素对城市土地利用/覆盖变化的影响。研究结果表明:(1)新中国成立以来,西宁和拉萨主城区持续扩展,均呈现非线性的增长态势,城市土地面积分别从1949基准年的1.98 km2和1.10 km2增长到2018年的75.65 km2和76.04 km2;西宁主城区城市扩展呈现十字状的扩展态势,拉萨呈现出圈层外延式的扩展模式;(2)自2000年来,西宁和拉萨城市绿化水平显著提升。2000~2018年,西宁和拉萨城市不透水层面积分别从36.91 km2和21.56 km2增加到55.34 km  相似文献   

11.
The loess plateau in China has faced severe soil erosion and runoff. Check-dams are effective measures for soil and water conservation; concomitantly check-dam planning and construction urgently require current land use maps. Remote sensing technique plays a key role in achieving up-to-date land use maps. However, limited by the impact of hilly and gully terrain in the loess plateau, commonly used classifier for remote sensing data cannot achieve satisfactory results. In this paper, HongShiMao watershed in the loess plateau was chosen as the study area. Decision tree classifier (DTC) based on a genetic algorithm (GA) was applied to the land use classification automatically. Compared with the results by iterative self-organizing data analysis technique (ISODATA), GA-based DTC had much better results. Its total accuracy was 83.2% with a Kappa coefficient 0.807. The results also showed that most part of the study area belonged to the barren land with sparse grass or crop cover that attributed to the soil erosion and runoff.  相似文献   

12.
Hyperspectral remote sensing data open up new opportunities for analyzing urban areas characterized by a large variety of spectrally distinct surface materials. Spectroscopic analysis using diagnostic spectral features yields the potential for automated identification and mapping of these materials. This study proposes a new approach for the determination and evaluation of such spectral features that are robust against spectral overlap between material classes and within-class variability. Analysis is based on comprehensive field and image spectral libraries of more than 21,000 spectra of surface materials widely-used in German cities. The robustness of the interactively defined spectral features is evaluated by a separability analysis. This method is performed based on confusion matrices for each material computed from classification results. For comparison this analysis is also performed for material-specific gray values of selected bands. The obtained commission and omission errors show superiority of the spectral features compared to gray values for most of the investigated materials. The results indicate that robust spectral features yield the potential for unsupervised detection of endmembers in hyperspectral image data.  相似文献   

13.
A temporal analysis of urban forest carbon storage using remote sensing   总被引:4,自引:0,他引:4  
Quantifying the carbon storage, distribution, and change of urban trees is vital to understanding the role of vegetation in the urban environment. At present, this is mostly achieved through ground study. This paper presents a method based on the satellite image time series, which can save time and money and greatly speed the process of urban forest carbon storage mapping, and possibly of regional forest mapping. Satellite imagery collected in different decades was used to develop a regression equation to predict the urban forest carbon storage from the Normalized Difference Vegetation Index (NDVI) computed from a time sequence (1985-1999) of Landsat image data. This regression was developed from the 1999 field-based model estimates of carbon storage in Syracuse, NY. The total carbon storage estimates based on the NDVI data agree closely with the field-based model estimates. Changes in total carbon storage by trees in Syracuse were estimated using the image data from 1985, 1992, and 1999. Radiometric correction was accomplished by normalizing the imagery to the 1999 image data. After the radiometric image correction, the carbon storage by urban trees in Syracuse was estimated to be 146,800 tons, 149,430 tons, and 148,660 tons of carbon for 1985, 1992, and 1999, respectively. The results demonstrate the rapid and cost-effective capability of remote sensing-based quantitative change detection in monitoring the carbon storage change and the impact of urban forest management over wide areas.  相似文献   

14.
Empirical relationships between sea surface carbon dioxide fugacity (fCO2sw) and sea surface temperature (SST) were applied to datasets of remotely sensed SST to create fCO2sw fields in the Caribbean Sea. SST datasets from different sensors were used, as well as the SST fields created by optimum interpolation of bias corrected AVHRR data. Empirical relationships were derived using shipboard fCO2sw data, in situ SST data, and SST data from the remote sensing platforms. The results show that the application of a relationship based on shipboard SST data, on fields of remotely sensed SST yields biased fCO2sw values. This bias is reduced if the fCO2sw-SST relationships are derived using the same SST data that are used to create the SST fields. The fCO2sw fields found to best reproduce observed fCO2sw are used in combination with wind speed data from QuikSCAT to create weekly maps of the sea-air CO2 flux in the Caribbean Sea in 2002. The region to the SW of Cuba was a source of CO2 to the atmosphere throughout 2002, and the region to the NE was a sink during winter and spring and a source during summer and fall. The net uptake of CO2 in the region was doubled when potential skin layer effects on fCO2sw were taken into account.  相似文献   

15.
Noise is one of the main factors degrading the quality of original multichannel remote sensing data and its presence influences classification efficiency, object detection, etc. Thus, pre-filtering is often used to remove noise and improve the solving of final tasks of multichannel remote sensing. Recent studies indicate that a classical model of additive noise is not adequate enough for images formed by modern multichannel sensors operating in visible and infrared bands. However, this fact is often ignored by researchers designing noise removal methods and algorithms. Because of this, we focus on the classification of multichannel remote sensing images in the case of signal-dependent noise present in component images. Three approaches to filtering of multichannel images for the considered noise model are analysed, all based on discrete cosine transform in blocks. The study is carried out not only in terms of conventional efficiency metrics used in filtering (MSE) but also in terms of multichannel data classification accuracy (probability of correct classification, confusion matrix). The proposed classification system combines the pre-processing stage where a DCT-based filter processes the blocks of the multichannel remote sensing image and the classification stage. Two modern classifiers are employed, radial basis function neural network and support vector machines. Simulations are carried out for three-channel image of Landsat TM sensor. Different cases of learning are considered: using noise-free samples of the test multichannel image, the noisy multichannel image and the pre-filtered one. It is shown that the use of the pre-filtered image for training produces better classification in comparison to the case of learning for the noisy image. It is demonstrated that the best results for both groups of quantitative criteria are provided if a proposed 3D discrete cosine transform filter equipped by variance stabilizing transform is applied. The classification results obtained for data pre-filtered in different ways are in agreement for both considered classifiers. Comparison of classifier performance is carried out as well. The radial basis neural network classifier is less sensitive to noise in original images, but after pre-filtering the performance of both classifiers is approximately the same.  相似文献   

16.
Satellite-measured growth of the urban heat island of Houston, Texas   总被引:9,自引:0,他引:9  
Growth of the surface temperature urban heat island (UHI) of Houston, TX is determined by comparing two sets of heat island measurements taken 12 years apart. Individual heat island characteristics are calculated from radiative temperature maps obtained using the split-window infrared channels of the Advanced Very High Resolution Radiometer (AVHRR) on board National Oceanic and Atmospheric Administration polar-orbiting satellites. Eighty-two nighttime scenes taken between 1985 and 1987 are compared to 125 nighttime scenes taken between 1999 and 2001. Analysis of the UHI characteristics from these two intervals reveals a mean growth in magnitude of 0.8 K, or 35%. The growth of the mean area of the UHI is found to range between 170 and 650 km2, or from 38% to 88%, depending on the method of analysis.  相似文献   

17.
Recent retrievals of multiple satellite products for each component of the terrestrial water cycle provide an opportunity to estimate the water budget globally. In this study, we estimate the water budget from satellite remote sensing over ten global river basins for 2003-2006. We use several satellite and non-satellite precipitation (P) and evapo-transpiration (ET) products in this study. The satellite precipitation products are the GPCP, TRMM, CMORPH and PERSIANN. For ET, we use four products generated from three retrieval models (Penman-Monteith (PM), Priestley-Taylor (PT) and the Surface Energy Balance System (SEBS)) with data inputs from the Earth Observing System (EOS) or the International Satellite Cloud Climatology Project (ISCCP) products. GPCP precipitation and PM (ISCCP) ET have less bias and errors over most of the river basins. To estimate the total water budget from satellite data for each basin, we generate merged products for P and ET by combining the four P and four ET products using weighted values based on their errors with respect to non-satellite merged product. The water storage change component is taken from GRACE satellite data, which are used directly with a single pre-specified error value. In the absence of satellite retrievals of river discharge, we use in-situ gauge measurements. Closure of the water budget over the river basins from the combined satellite and in-situ discharge products is not achievable with errors of the order of 5-25% of mean annual precipitation. A constrained ensemble Kalman filter is used to close the water budget and provide a constrained best-estimate of the water budget. The non-closure error from each water budget component is estimated and it is found that the merged satellite precipitation product carries most of the non-closure error.  相似文献   

18.
19.
Validation comparisons between satellite-based surface energy balance models and tower-based flux measurements over heterogeneous landscapes can be strongly influenced by the spatial resolution of the remote sensing inputs. In this paper, a two-source energy balance model developed to use thermal and visible /near-infrared remotely sensed data is applied to Landsat imagery collected during the 2004 Soil Moisture Experiment (SMEX04) conducted in southern Arizona. Using a two dimensional flux-footprint algorithm, modeled surface fluxes are compared to tower measurements at three locations in the SMEX04 study area: two upland sites, and one riparian site. The effect of pixel resolution on evaluating the performance of the land surface model and interpreting spatial variations of land surface fluxes over these heterogeneous areas is evaluated. Three Landsat scenes were examined, one representing the dry season and the other two representing the relatively wet monsoon season. The model was run at three resolution scales: namely the Landsat visible/near-infrared band resolution (30 m), the Landsat 5 thermal band resolution (120 m), and 960 m, which is nominally the MODIS thermal resolution at near-nadir. Comparisons between modeled and measured fluxes at the three tower sites showed good agreement at the 30 m and 120 m resolutions — pixel scales at which the source area influencing the tower measurement (∼ 100 m) is reasonably resolved. At 960 m, the agreement is relatively poor, especially for the latent heat flux, due to sub-pixel heterogeneity in land surface conditions at scales exceeding the tower footprint. Therefore in this particular landscape, thermal data at 1-km resolution are not useful in assessing the intrinsic accuracy of the land-surface model in comparison with tower fluxes. Furthermore, important spatial patterns in the landscape are lost at this resolution. Currently, there are no definite plans supporting high resolution thermal data with regular global coverage below ∼ 700 m after Landsat 5 and ASTER fail. This will be a serious problem for the application and validation of thermal-based land-surface models over heterogeneous landscapes.  相似文献   

20.
Supervised classification in remote sensing is a very complex problem and involves steps of different nature, including a serious data preprocessing. The final objective can be stated in terms of a classification of isolated pixels between classes, which can be either previously known or not (for example, different land uses), but with no particular shape nither well defined borders. Hence, a fuzzy approach seems natural in order to capture the structure of the image. In this paper we stress that some useful tools for a fuzzy classification can be derived from fuzzy coloring procedures, to be extended in a second stage to the complete non visible spectrum. In fact, the image is considered here as a fuzzy graph defined on the set of pixels, taking advantage of fuzzy numbers in order to summarize information. A fuzzy model is then presented, to be considered as a decision making aid tool. In this way we generalize the classical definition of fuzzy partition due to Ruspini, allowing in addition a first evaluation of the quality of the classification in this way obtained, in terms of three basic indexes (measuring covering, relevance and overlapping of our family of classes).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号