首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Since the launch of the ENVISAT satellite in 2002, the Radar Altimetry Mission provides systematic observations of the Earth topography. Among the different goals of the ENVISAT Mission, one directly concerns land hydrology: the monitoring of the water levels of lakes, wetlands, and rivers. The ENVISAT Geophysical Data Records products contain, over different type of surfaces, altimeter ranges derived from four specialized algorithms or retrackers. However, none of the retrackers are intended to the processing of the radar echoes over continental waters. A validation study is necessary to assess the performances of the different ENVISAT-derived water levels to monitor inland waters. We have selected four test-zones over the Amazon basin to achieve this validation study. We compare first the performances of these retracking algorithms to deliver reliable water levels for land hydrology. Comparisons with in-situ gauge stations showed that Ice-1 algorithm, based on the Offset Centre of Gravity technique, provides the more accurate water stages. Second, we examine the potentiality to combine water levels derived from different sensors (Topex/Poseidon, ERS-1 and -2, GFO).  相似文献   

2.
Recent retrievals of multiple satellite products for each component of the terrestrial water cycle provide an opportunity to estimate the water budget globally. In this study, we estimate the water budget from satellite remote sensing over ten global river basins for 2003-2006. We use several satellite and non-satellite precipitation (P) and evapo-transpiration (ET) products in this study. The satellite precipitation products are the GPCP, TRMM, CMORPH and PERSIANN. For ET, we use four products generated from three retrieval models (Penman-Monteith (PM), Priestley-Taylor (PT) and the Surface Energy Balance System (SEBS)) with data inputs from the Earth Observing System (EOS) or the International Satellite Cloud Climatology Project (ISCCP) products. GPCP precipitation and PM (ISCCP) ET have less bias and errors over most of the river basins. To estimate the total water budget from satellite data for each basin, we generate merged products for P and ET by combining the four P and four ET products using weighted values based on their errors with respect to non-satellite merged product. The water storage change component is taken from GRACE satellite data, which are used directly with a single pre-specified error value. In the absence of satellite retrievals of river discharge, we use in-situ gauge measurements. Closure of the water budget over the river basins from the combined satellite and in-situ discharge products is not achievable with errors of the order of 5-25% of mean annual precipitation. A constrained ensemble Kalman filter is used to close the water budget and provide a constrained best-estimate of the water budget. The non-closure error from each water budget component is estimated and it is found that the merged satellite precipitation product carries most of the non-closure error.  相似文献   

3.
Time series of snow covered area (SCA) estimates from the Moderate Resolution Imaging Spectroradiometer (MODIS) and Landsat Enhanced Thematic Mapper (ETM+) were merged with a spatially explicit snowmelt model to reconstruct snow water equivalent (SWE) in the Rio Grande headwaters (3419 km2). A linear optimization scheme was used to derive SCA estimates that preserve the statistical moments of the higher spatial resolution (i.e. 30 m) ETM+ data and resolve the superior temporal signal (i.e. ∼ daily) of the MODIS data. It was found that merging the two SCA products led to an 8% decrease and an 18% increase in the basinwide SWE in 2001 and 2002, respectively, compared to the SWE estimated from ETM+ only. Relative to SWE simulations using only ETM+ data, the hybrid SCA estimates reduced the mean absolute SWE error by 17 and 84% in 2001 and 2002, respectively; errors were determined using intensive snow survey data and two separate methods of scaling snow survey field measurements of SWE to the 1-km model pixel resolution. SWE bias for both years was reduced by 49% and skewness was reduced from − 0.78 to 0.49. These results indicate that the hybrid SWE was closer to being an unbiased estimate of the measured SWE and errors were distributed more normally. The accuracy of the SCA estimates is likely dependent on the vegetation fraction.  相似文献   

4.
We report remote detections of physically buried specularly reflecting objects using microwave radar at two sites: Ashalim and Tseelim in the northern region of the Negev Desert, Israel. These detections provide confirmation that microwave subsurface remote sensing is a genuine phenomenon. At Ashalim, a scatterometer operating in the P-band (441 MHz, 68 cm) was mounted on a cherry picker truck at a height of 8 m and used to detect two triangular aluminum mesh reflectors (forming a 1-m square area reflector) buried down to a depth of 8 cm in dry sand. At Tseelim, the same scatterometer was mounted on an airplane flying at an altitude of 70 m and used to detect 1-m square aluminum reflectors (each one submerged at a different location along the airplane flight path) buried down to a depth of 20 cm. The experimental results compare favorably with a theoretical model that incorporates radar absorption effects arising in the sandy subsurface layer and radar interference effects arising from phase differences between reflections from the surface and buried reflector. The theoretical modeling also predicts the detection of a subsurface reflector down to a depth of about 4.4 m. This experiment and the associated modeling approach is the first of a series of planned experiments, which we outline for the detection and the theoretical evaluation of buried reflectors using remote microwave and VHF radar. We identify potential subject areas for environmental research.  相似文献   

5.
Over the past few years, the increased spectral and spatial resolution of remote sensing equipment has promoted the investigation of new techniques for inland and coastal water monitoring. The availability of new high-resolution data has allowed improvements in models based on the radiative transfer theory for assessing optical water quality parameters. In this study, we fine-tuned a physical model for the highly turbid Venice lagoon waters and developed an inversion technique based on a two-step optimization procedure appropriate for hyperspectral data processing to retrieve water constituent concentrations from remote data. In the first step, the solution of a linearized analytical formulation of the radiative transfer equations was found. In the second step, this solution was used to provide the initial values in a non-linear least squares-based method. This effort represents a first step in the construction of a feasible and timely methodology for Venice lagoon water quality monitoring by remote sensing, especially in view of the existing experimental hyperspectral satellite (Hyperion) and the future missions such as PRISMA, EnMap and HyspIRI. The optical properties of the water constituents were assessed on the basis of sea/lagoon campaigns and data from the literature. The water light field was shaped by an analytical formulation of radiative transfer equations and the application of numerical simulations (Hydrolight software). Once the optical properties of the Venice lagoon bio-optical model were validated, the inverse procedure was applied to local radiometric spectra to retrieve concentrations of chlorophyll, colored dissolved organic matter and tripton. The inverse procedure was validated by comparing these concentrations with those measured in the laboratory from in situ water samples, then it was applied to airborne (CASI and MIVIS) and satellite (Hyperion) sensors to derive water constituent concentration maps. The consistent results encourage the use of this procedure using future missions satellite (PRISMA, EnMap and HyspIRI).  相似文献   

6.
对水域的动态监测,有利于及时掌握水域变化信息,加强水资源的管理和保护。高分辨率遥感对地识别能力强,监测成果真实、客观、准确、全面,是水域动态监测的一种先进的技术手段。本研究以江苏省水域面积为监测对象,利用2012年和2014年两期0.3米空间分辨率航片,开展2012~2014年江苏全省水域面积变化遥感监测研究。经遥感监测,外业调查,数据统计,结果表明:(1)2012~2014年江苏省水域面积总计增加5.457km2,其中南通、连云港、扬州和泰州共4市水域面积减少,而南京、无锡、徐州、常州、苏州、淮安、盐城、镇江和宿迁共9市水域面积增加;(2) 2012-2014年江苏水域面积增加的类型为湖泊和塘坝,减少的类型为河流和水库;(3)江苏省水域面积变化主要原因包括河湖监管力度加大、湖泊退圩还湖、长江码头建设、水库水域岸线开发占用等。通过本研究,利用高空间分辨率遥感影像开展水域面积变化监测,可快速、准确获取大范围区域水域变化信息,为实现水域的动态监管、水行政执法、水资源的管理和保护提供先进的技术手段和基础数据支撑。  相似文献   

7.
为研究遥感技术在水务领域的适用性,从水资源管理、水环境监测、水土保持、水利工程监测、防洪抗旱、生态环境监测等方面,梳理近年来天津水务领域的遥感应用案例和研究进展,对现状存在的遥感产品覆盖领域和基础研究工作不足、遥感数据应用形式单一、光谱和卫星资源利用不充分、监测精度和时效性欠缺等问题进行剖析,对遥感的业务流程化、大数据应用、处理软件国产化及高光谱遥感等技术应用进行探讨,研究表明:遥感在水务领域有巨大的应用需求和市场潜力,遥感技术和产品的发展完善将极大提升水务信息化水平。  相似文献   

8.
Spatiotemporal variations of wetland water in the Prairie Pothole Region are controlled by many factors; two of them are temperature and precipitation that form the basis of the Palmer Drought Severity Index (PDSI). Taking the 196 km2 Cottonwood Lake area in North Dakota as our pilot study site, we integrated PDSI, Landsat images, and aerial photography records to simulate monthly water surface. First, we developed a new Wetland Water Area Index (WWAI) from PDSI to predict water surface area. Second, we developed a water allocation model to simulate the spatial distribution of water bodies at a resolution of 30 m. Third, we used an additional procedure to model the small wetlands (less than 0.8 ha) that could not be detected by Landsat. Our results showed that i) WWAI was highly correlated with water area with an R2 of 0.90, resulting in a simple regression prediction of monthly water area to capture the intra- and inter-annual water change from 1910 to 2009; ii) the spatial distribution of water bodies modeled from our approach agreed well with the water locations visually identified from the aerial photography records; and iii) the R2 between our modeled water bodies (including both large and small wetlands) and those from aerial photography records could be up to 0.83 with a mean average error of 0.64 km2 within the study area where the modeled wetland water areas ranged from about 2 to 14 km2. These results indicate that our approach holds great potential to simulate major changes in wetland water surface for ecosystem service; however, our products could capture neither the short-term water change caused by intensive rainstorm events nor the wetland change caused by human activities.  相似文献   

9.
浅谈遥感新技术及其发展动态   总被引:3,自引:3,他引:0  
遥感技术已经在国内外的各个领域得到了广泛的应用,在各国的经济建设中起到了重要作用。本文主要介绍了有关国内外遥感技术的最新进展情况和今后的发展趋势问题。  相似文献   

10.
Polar ice masses and sheets are sensitive indicators of climate change. Small-scale surface roughness significantly impacts the microwave emission of the sea ice/snow surface; however, published results of surface roughness measurements of sea ice are rare. Knowing the refractive index is important to discriminate between objects. In this study, the small-scale roughness and refractive index over sea ice are estimated with AMSR-E observations and a unique method. Consequently, the small-scale surface roughness of 0.25 cm to 0.5 cm at AMSR-E 6.9 GHz shows reasonable agreement with the results of known observations, ranging from 0.2 cm to 0.6 cm for the sea ice in the Antarctic and Arctic regions. The refractive indexes are retrieved from 1.6 to 1.8 for winter, from 1.2 to 1.4 for summer in the Arctic and the Antarctic, which are similar to those of the sea ice and results from previous studies. This research shows the physical characteristics of the sea ice edges and melting process. Accordingly, this investigation provides an effective procedure for retrieving the small-scale roughness and refractive index of sea ice and snow. Another advantage of this study is the ability to distinguish sea ice from the sea surface by their relative small-scale roughness.  相似文献   

11.
水利部旱情遥感监测系统建设与展望   总被引:1,自引:0,他引:1  
遥感技术以其快速、经济和大空间范围获取的特点,已成为旱情监测的重要手段。介绍国家防汛指挥系统二期工程水利部旱情遥感监测系统的建设情况,包括旱情遥感监测模型、业务流程及系统的设计与开发等。系统实现全国旱情监测逐周生产、区域旱情1~3 d应急快速监测及逐月区域水体监测产品的生产。试运行表明全国旱情监测与国外同类产品结果一致或优于同类产品;区域旱情监测平均精度达到80%以上。最后,对旱情遥感监测系统未来发展进行展望。  相似文献   

12.
Remote sensing leaf water indices depend on two variables: the relative water content (RWC) of leaf cells, which may serve as an indicator for water deficit stress in plants, and leaf thickness. The measurement of leaf water thickness (LWT) appears to be an experimental method that can be well correlated with leaf water indices. We studied how leaf water indices relate to the LWT in cowpea, bean, and sugarbeet. In all three species, the LWT increased linearly with increasing leaf thickness. The T1300/T1450 leaf water index, based on light transmitted through leaves, showed a strong exponential correlation with the LWT as expected from theoretical analysis. However, the R1300/R1450 leaf water index, based on light reflected from leaves, exhibited a characteristic logarithmic correlation with the LWT. For both leaf water indices we found only minor differences between the three species examined.  相似文献   

13.
Empirical relationships between sea surface carbon dioxide fugacity (fCO2sw) and sea surface temperature (SST) were applied to datasets of remotely sensed SST to create fCO2sw fields in the Caribbean Sea. SST datasets from different sensors were used, as well as the SST fields created by optimum interpolation of bias corrected AVHRR data. Empirical relationships were derived using shipboard fCO2sw data, in situ SST data, and SST data from the remote sensing platforms. The results show that the application of a relationship based on shipboard SST data, on fields of remotely sensed SST yields biased fCO2sw values. This bias is reduced if the fCO2sw-SST relationships are derived using the same SST data that are used to create the SST fields. The fCO2sw fields found to best reproduce observed fCO2sw are used in combination with wind speed data from QuikSCAT to create weekly maps of the sea-air CO2 flux in the Caribbean Sea in 2002. The region to the SW of Cuba was a source of CO2 to the atmosphere throughout 2002, and the region to the NE was a sink during winter and spring and a source during summer and fall. The net uptake of CO2 in the region was doubled when potential skin layer effects on fCO2sw were taken into account.  相似文献   

14.
A strong linear relationship is found between Special Sensor Microwave/Imager (SSM/I) microwave (19 and 37 GHz) surface emissivities at horizontal and vertical polarizations over snow- and ice-free land surfaces. This allows retrieving the land surface emissivity and temperature from satellite microwave brightness temperatures after atmospheric corrections. Over the Canadian sub-arctic continental area, we show that the main factor modifying the emissivity is the fraction of water surface (FWS) within a pixel. Accordingly, a map of the fraction of water surface across the Canadian landmass is derived, given a correspondence within 6% as compared to the 1 km2 Canadian National Topographic Database of water-covered areas. The microwave-derived surface temperatures are compared to synchronous in situ air and ground surface temperatures and also with independent satellite IR measurements over areas without snow or ice. Root mean square differences range between 2° and 3.5°, with mean bias error of the order of 1-3°. Better results are always obtained with the 37 GHz channel rather than with the 19 GHz channel. Over dense vegetation, the microwave-derived surface temperature is closer to the air temperature (at surface level) than to the ground temperature. The proposed simple retrieval algorithm, not sensitive to cloud cover, appears very useful for monitoring summer interannual or seasonal trends of the fraction of surface water, as well as the daily land surface temperature variation, which are very important parameters in environmental change analysis.  相似文献   

15.
Inundation patterns in Amazon River floodplains are revealed by analysis of the 37 GHz polarization difference observed by the Scanning Multichannel Microwave Radiometer on the Nimbus-7 satellite. Flooded area is estimated at monthly intervals for January 1979 through August 1987 using mixing models that account for the major landscape units with distinctive microwave emission characteristics. Results are presented separately for 12 longitudinal reaches along the Amazon River main stem in Brazil as well as for three major tributaries (the Jurua, Purus and Madeira rivers). The total area along the Amazon River main stem that was flooded (including both floodplain and open water) varied between 19000 and 91 000km2. The correlation between flooded area and river stage is used to develop a predictive relationship and reconstruct regional inundation patterns in the floodplain of the Amazon River main stem over the past 94 years of stage records (1903-1996). The mean flooded area along the Amazon River during this 94-year period was 46800km2, of which the openwater surfaces of river channels and floodplain lakes comprised about 20 700km2.  相似文献   

16.
The 1800 MW Daya Bay Nuclear Power Station (DNPS), China's first nuclear power station, is located on the coast of the South China Sea. DNPS discharges 29 10×105 m3 year−1 of warm water from its cooling system into Daya Bay, which could have ecological consequences. This study examines satellite sea surface temperature data and shipboard water column measurements from Daya Bay. Field observations of water temperature, salinity, and chlorophyll a data were conducted four times per year at 12 sampling stations in Daya Bay during January 1997 to January 1999. Sea surface temperatures were derived from the Advanced Very High Resolution Radiometer (AVHRR) onboard National Oceanic and Atmospheric Administration (NOAA) polar orbiting satellites during November 1997 to February 1999. A total of 2905 images with 1.1×1.1 km resolution were examined; among those images, 342 have sufficient quality for quantitative analysis. The results show a seasonal pattern of thermal plumes in Daya Bay. During the winter months (December to March), the thermal plume is localized to an area within a few km of the power plant, and the temperature difference between the plume and non-plume areas is about 1.5 °C. During the summer and fall months (May to November), there is a larger thermal plume extending 8-10 km south along the coast from DNPS, and the temperature change is about 1.0 °C. Monthly variation of SST in the thermal plume is analyzed. AVHRR SST is higher in daytime than in nighttime in the bay during the whole year. The strong seasonal difference in the thermal plume is related to vertical mixing of the water column in winter and to stratification in summer. Further investigations are needed to determine any other ecological effects of the Daya Bay thermal plume.  相似文献   

17.
水网城市区域规划功能区图像相似性特征较强,且受生态环境、水资源调度等多个因素影响,造成水网区域规划协调性较差,提出基于遥感图像三区光谱特征的水网城市区域规划协调控制方法。使用高分辨率遥感设备采集城市影像;运用形态学算法,利用结构树,通过击中、击不中变换的方式对图像做细化处理;从亮度均值、目标标准差和亮度差级指数三方面提取图像光谱特征;采用最邻近分类算法,建立分类模型,以优先功能区、一般功能区和冲突协调区的自身环境和光谱特征为依据,将提取的特征输入到分类模型中,自动输出划分结果,利用 A*算法简化划分步骤,实现水网城市规划协调控制。实验结果表明,所提方法提高了遥感图像质量,分类结果符合不同功能区的特征要求;兼顾其它生态要素,规划具有协调性,规划效果较好;可在2s内完成目标区域规划,规划时间较短;对于目标规划数据的检测误差小、准确率高,大幅度提高搜索效率,能够为水网城市区域规划协调控制提供可靠依据。  相似文献   

18.
Urban development has expanded rapidly in the Tampa Bay area of west-central Florida over the past century. A major effect associated with this population trend is transformation of the landscape from natural cover types to increasingly impervious urban land. This research utilizes an innovative approach for mapping urban extent and its changes through determining impervious surfaces from Landsat satellite remote sensing data. By 2002, areas with subpixel impervious surface greater than 10% accounted for approximately 1800 km2, or 27 percent of the total watershed area. The impervious surface area increases approximately three-fold from 1991 to 2002. The resulting imperviousness data are used with a defined suite of geospatial data sets to simulate historical urban development and predict future urban and suburban extent, density, and growth patterns using SLEUTH model. Also examined is the increasingly important influence that urbanization and its associated imperviousness extent have on the individual drainage basins of the Tampa Bay watershed.  相似文献   

19.
黄河主溜线的趋向直接影响黄河的防洪决策与规划,而现有的主溜线演进方法需判断每一步河流方向。提出一种河流直向化的预处理方法,利用光谱相似性原理提取河流域,然后轮廓跟踪河流域外边界,对边界内的河流域通过线性插值的方式进行直向化处理;动态演进直向河流的主溜线,随后将其逆映射回原图像,获得原图像中河流域的主溜线。结果表明,运用直向化预处理方法提取主溜线,在没有降低误差精度的基础上,避免了频繁地检测河流走向,简化了主溜线的演进模型。  相似文献   

20.
We examined the spatial and temporal variability of the Secchi Disk Depth (SDD) within Tampa Bay, Florida, using the Sea-viewing Wide Field-of-View Sensor (SeaWiFS) satellite imagery collected from September 1997 to December 2005. SDD was computed using a two-step process, first estimating the diffuse light attenuation coefficient at 490 nm, Kd(490), using a semi-analytical algorithm and then SDD using an empirical relationship with Kd(490). The empirical SDD algorithm (SDD = 1.04 × Kd(490)− 0.82, 0.9 < SDD < 8.0 m, r2 = 0.67, n = 80) is based on historical SDD observations collected by the Environmental Protection Commission of Hillsborough County (EPCHC) in Tampa Bay. SeaWiFS derived SDD showed distinctive seasonal variability, attributed primarily to chlorophyll concentrations and color in the rainy season and to turbidity in the dry season, which are in turn controlled by river runoff and winds or wind-induced sediment resuspension, respectively. The Bay also experienced strong interannual variability, mainly related to river runoff variability. As compared to in situ single measurements, the SeaWiFS data provide improved estimates of the “mean” water clarity conditions in this estuary because of the robust, frequent, and synoptic coverage. Therefore we recommend incorporation of this technique for routine monitoring of water quality in coastal and large estuarine waters like Tampa Bay.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号