首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到16条相似文献,搜索用时 187 毫秒
1.
用全硅MCM-41共浸渍法担载Co-Mo制备的催化剂,其金属担载量ω(MoO3)=20%。考察了该催化剂对二苯并噻吩(DBT)、4-甲基二苯并噻吩(4-MDBT)、4,6-二甲基二苯并噻吩(4,6-DMDBT)和高硫直馏柴油加氢脱硫反应的活性,并与日本某深度加氢脱硫催化剂(DHDS)作了比较。结果表明,所研制的催化剂对DBT、4-MDBT、4,6-DMDBT和高硫直馏柴油(ωS=2.83%)均具有很高的加氢脱硫活性,高于DHDS催化剂的活性。MCM-41担载的催化剂最佳Co/Mo原子比为0.75,高于以γ-Al2O3作载体的市场上广泛应用的Co-Mo催化剂,这可能是活性组分在表面高度分散的结果。在DBT的加氢脱硫反应中,联苯(BP)的选择性远高于环己烷基苯(CHB)的选择性,说明Co-Mo/MCM-41催化的加氢脱硫反应中,氢解脱硫反应占主导地位。与Ni—Mo/MCM-41催化的加氢脱硫反应过程相似,加氢脱硫反应中生成的CHB稳定性较低,会进一步分解为苯和环己烷。由TPR谱图可知,表面的Mo和Co活性组分存在相互作用,活性高的Co-Mo/MCM-41催化剂的TPR谱在600℃左右出现一个新的特征峰。  相似文献   

2.
用氧化-萃取法脱除催化裂化柴油加氢后的剩余硫化物   总被引:12,自引:1,他引:11  
催化裂化柴油加氢后的剩余硫化物主要为二苯并噻吩、4-甲基二苯并噻吩和4,6-二甲基二苯并噻吩为代表的多环芳香硫化物。研究用H2O2/甲酸体系氧化加氢后的柴油,并用有机溶剂萃取,除去二苯并噻吩类的氧化产物。试验发现,溶剂N,N-二甲基甲酰胺(DMF)的萃取效果优于二甲亚砜、乙腈及甲醇。在50℃下氧化反应15min,氧化后用DMF以剂油比1:2萃取,柴油中硫质量分数可从665.5μg/g降至83.6μg/g,脱硫油收率94.0%,氧化剂可循环使用3次。氧化-萃取前后柴油的GC-FPD分析表明,柴油中二苯并噻吩(DBT)类完全脱除。柴油氧化产物的IR分析表明,DBT类硫化物的氧化产物为砜类。  相似文献   

3.
微生物方法脱除柴油中有机硫的初步研究   总被引:16,自引:1,他引:15  
从土壤中分离筛选出l株可将二苯并噻吩代谢为2-羟基二苯和水溶性硫酸盐的细菌YC-LI-1。初步鉴定其属于假单胞菌属(Pseudomonas),该菌株在水中对二苯并噻吩的转化率达到了90%以上。用模拟化合物二苯并噻吩和正十六烷考察了YC-LI-l脱除二苯并噻吩有机硫的最佳条件。并在该最佳条件下,对实际加氢柴油进行脱硫试验。结果表明,YC-LI-l菌株可脱除柴油中约50%的二苯并噻吩类有机硫。  相似文献   

4.
为了深度脱除石油及其产品中的有机硫,使用原生质体融合获得的脱硫细胞工程菌进行生物脱硫动力学实验。实验表明,该细胞工程菌代谢二苯并噻吩(DBT)的终产物为2-羟基联苯(2-HBP);并获得了该菌株代谢油相正十六烷中不同浓度DBT时,细胞生长动力学方程、DBT消耗动力学方程以及代谢产物2-HBP合成的动力学方程。这些研究结果对更好地确定发酵脱硫工艺,提高脱硫效率,加快我国生物脱硫的工业化进程具有一定的应用价值。  相似文献   

5.
针对传统加氢脱硫方法难以脱除柴油中含有的大量以噻吩、二苯并噻吩(DBT)等形式存在的含硫化合物,以DBT为模型化合物,筛选出以DBT为唯一硫源且降解DBT较好的菌株HT1,正交实验确定菌株发酵最佳条件为:温度30 ℃,硫源DBT质量浓度102.0 mg/L,氮源NH4NO3质量浓度2.0 g/L,碳源甘油质量浓度5 g/L,培养时间4 d,pH值7.0。硫源对菌株HT1的生长及脱硫效果的研究结果表明:硫源对菌株HT1的生长影响不大,但菌株HT1对以DBT为硫源的脱硫效果最佳。菌株HT1对其它含硫化合物的脱硫效果与含硫化合物的结构有关。菌株HT1对催化裂化柴油的脱硫率较低,有待进一步提高。  相似文献   

6.
活性炭基吸附剂脱除FCC柴油中硫的研究   总被引:3,自引:0,他引:3  
用等体积浸渍法制备了过渡金属活性炭基脱硫剂,采用动态吸附法对脱硫剂的脱硫性能进行评价。结果表明,负载过渡金属的活性炭基吸附剂对FCC柴油中的硫有较好的脱除效果。当活性组分负载量为4.0%、脱硫温度为80℃、空速为2.0h^-1油剂比为1.0时,脱硫剂的脱硫率可达46.89%;活性炭经硝酸预处理后负载活性组分,其脱硫性能明显提高,脱硫率最高可达59.73%;活性炭基吸附剂主要脱除了柴油中加氢脱硫难以脱除的二苯并噻吩及其衍生物。  相似文献   

7.
直流电场对脱硫菌红串红球菌NCC-1生长及脱硫性能的影响   总被引:1,自引:0,他引:1  
以专一性降解二苯并噻吩(DBT)的红串红球菌NCC-1为脱硫菌,以DBT为硫源,考察了加直流电场对脱硫菌在不同浓度DBT水相中生长和脱硫性能的影响,以及调控菌液pH对脱硫菌生长和脱硫性能的影响;同时考察了脱硫菌对柴油的脱硫性能。实验结果表明,当电流密度为0.52~1.01A/m2时,能有效促进脱硫菌生长,提高脱硫效率,最佳电流密度为0.72A/m2,当DBT初始浓度为0.20mmol/L时,DBT完全降解的时间为120h,比不加电场时缩短了24h;当DBT初始浓度为1.00mmol/L时,DBT浓度降至0.31mmol/L所需时间为72h,比不加电场时缩短了96h。此外,调控菌液pH能有效促进脱硫菌生长。脱硫菌用于柴油脱硫时,在电流密度为0.72A/m2、柴油与菌液体积比1∶9的条件下,总硫含量从606mg/L降至269mg/L,脱硫率为55.7%,比不加电场时高出12.9个百分点。  相似文献   

8.
柴油深度脱硫新技术--过氧化氢氧化脱硫   总被引:4,自引:0,他引:4  
为了生产清洁燃料 ,世界各国在柴油脱硫领域主要致力于下述几种研究 :①加氢深度脱硫法 (含SynSat法 ) ;②生物脱硫法 ;③合成燃料法 (GTL) ;④氧化脱硫法。日本近畿大学最近报道了其 1 0年来对氧化脱硫法研究的成果。用氧化脱硫法精制直镏柴油及市售成品柴油 ,可将硫含量降低到小于 1 .0 μg/g。其原理是将有机硫化合物通过氧化反应 ,形成大原子价化合物。如硫醚生成亚砚磺化物。此时 ,硫与氧之间形成强大的极性结合 ,因而诱发各生成物的沸点、溶解度及吸附能力等物理性质发生显著变化 ,利用该现象将石油中的硫化物进行分离、精…  相似文献   

9.
1999年 1 1月号“PETROTECH”杂志报道 :日本工业技术院生命工程工业技术研究所与作为通产省的外围下属机构的石油产业活性化中心 (PEC)合作的研究课题组 ,成功地开发出柴油脱硫菌种。 1 999年 9月 7日该课题组称 ,新的脱硫菌种可同时脱除柴油中的苯并噻吩 (BT)和二苯并噻吩 (DBT)中的硫 ,而这两种硫化合物中的硫是用其他方法均难以脱除的。柴油微生物脱硫技术的开发成功 ,预计工业实施后可大幅度减少柴油车尾气对大气的污染。柴油微生物脱硫技术开发成功@燕林  相似文献   

10.
加氢/改质工艺组合满足清洁柴油的多种需求   总被引:7,自引:0,他引:7  
介绍了抚顺石油化工研究院开发的深度脱硫加氢精制、MCI、临氢降凝、催化裂化(FCC)柴油深度脱芳烃等专有技术及其组合工艺的技术特点。应用加氢精制—临氢降凝组合工艺加工劣质柴油,拓宽了柴油临氢降凝原料来源,柴油凝点可降至—35℃以下,硫脱除率达95%以上;应用加氢精制—MCI组合工艺加工FCC柴油,柴油硫含量可障至50μg/g以下,十六烷值提高8—12个单位,柴油收率达95%-98%;应用MCI—降凝组合工艺加工FCC和直馏柴油,可使柴油的凝点降至—35℃以下,十六烷值提高10个单位;应用加氢/改质—脱芳烃组合工艺、单段工艺流程加工芳烃质量分数为71.2%、十六烷值低于24的FCC柴油,在氢分压为8.0MPa、反应温度为360℃、体积空速为0.6h^-1、氢油体积比为500的条件下,柴油芳烃质量分数降至29.6%,十六烷值提高至39.8,而采用该工艺两段工艺流程可使柴油的芳烃质量分数降至16.5%,十六烷值提高至44.7。  相似文献   

11.
1 PrefaceInordertoreducetheemissionofharmfulexhaustedgasandtinyparticlesfromvehicles,morestringentregulationfortransportationfueliscomingintoeffectinmanycountriesandareas(seeTable 1and 2 ) .ItcanbeseenfromtheTablesthatlessandlesssulfurandolefincontentsing…  相似文献   

12.
以全硅MCM—41为载体制备W系深度加氢脱硫催化剂   总被引:12,自引:4,他引:8  
用全硅MCM-41担载Ni-W和Co-W制备了深度加氢脱硫催化剂,并在中压固定床反应器上分别考察了对二苯并噻吩(DBT)和高硫直接馏柴油的加氢脱硫性能。结果表明,全硅MCM-41担载制成的W系催化剂表现出很高的加氢脱硫活性,其中Ni-W/MCM-41活性高于Co-W/MCM-41,但两类催化剂的最佳Ni(Co)/W原子比均为0.75。从加氢脱硫产物分布看,两类催化剂的脱硫反应路径不同,在Co-W/MCM-41上主要通过氢解脱硫,而在Ni-W/MCM-41上则是通过氢解以及先经芳环加氢后脱硫的两条路径来进行,对Ni-MCM-41来说,加氢活性随温度升高而升高。  相似文献   

13.
An experimental study on obtaining concentrates of organic compounds from fuel fractions of petroleum by complexation with metal halides: aluminum chloride, aluminum bromide, anhydrous zinc chloride, and its crystal hydrate has been performed. Optimal conditions have been selected for the complexation reaction of aluminum and zinc halides with electron-donor compounds of diesel and jet fuels. The degree of removal of organic sulfur compounds from the diesel or jet fuel by complexation with aluminum chloride reaches 79.6 or 10.0 rel. %, respectively. It has been found that the concentrates obtained contain a large amount of normal and weakly branched alkanes, which form clathrates with polar components of the donor–acceptor complex (DAC). A mechanism is proposed for the intermolecular interaction of alkanes with the DAC components by hydrogen bonding with halogen, oxygen, and sulfur atoms.  相似文献   

14.
介绍了齿球形催化剂在加氢精制装置上的工业应用。应用结果表明:齿球形催化剂易装填均匀,运转过程中床层总压力降小于0.1 MPa,各测温点径向温度差小于1℃;在原料氮含量增加、操作工况劣化的情况下使用齿球形催化剂,精制柴油产品可以达到原定质量指标要求。与上一周期相比,在处理更高氮含量物料并且异构降凝催化剂减少用量近40%的情况下,可以从凝点较高的混合原料油生产超低硫的0号清洁柴油产品,并且保持较高的柴油产品收率。装置在加工焦化汽柴油时,液体收率高达98%以上,满足了生产0号柴油和通过处理劣质物料达到提高柴油收率的要求,说明使用齿球形催化剂,提高了催化剂的整体使用性能,从而提高了加工高氮含量劣质原料油的适应性。  相似文献   

15.
在小型固定流化床(FFB)装置上以二苯并噻吩(DBT)-十六烷体系为原料,研究DBT在催化裂化过程中的转化规律。结果表明,在反应温度500 ℃、剂油质量比6、空速10 h-1的条件下,DBT的转化率为45%左右。在DBT参与的反应中,烷基化反应占主要地位。DBT转化为甲基苯并噻吩的比例最高,其次为C2~C5的烷基二苯并噻吩。DBT-十六烷反应体系的硫90%左右分布在催化裂化液体产品中,少量反应生成硫化氢,少量进入焦炭中。DBT的加入降低了十六烷的转化率,促使干气生成,汽油产率减少,柴油产率增加,焦炭产率显著增加。  相似文献   

16.
An oxidation desulfurization process for model sulfur compound has been investigated using sodium tungstate and sodium hydrogen sulfate as the catalyst and 30% aqueous hydrogen peroxide as the oxidizing agent. The effect of the reaction time, the reaction temperature, the amount of the oxidizing agent and the catalyst on the removal of dibenzothiophene (DBT) were investigated. The sulfur compound was extracted with the solvent after oxidization. The higher removal of DBT was up to nearly 80%.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号